Argument Encoding

Gereon Müller
gereon.mueller@uni-leipzig.de

March 20-24, 2006
Leipzig Spring School on Linguistic Diversity
March 26, 2006
Contents

1 Introduction .. 1
 1. Introduction .. 1
 2. Topic ... 1
 3. Arguments in the Grammar 1
 4. Argument Structure 1
 5. Argument Structure 2
 6. Argument Realization 2
 7. Argument Realization 3
 8. Systems of Argument Encoding 3
 9. Systems of Argument Encoding 3
 10. Dependent-Marking vs. Head-Marking 4
 11. Dependent-Marking vs. Head-Marking 4
 12. Language Types .. 4
 13. Icelandic 1 .. 4
 14. Icelandic 2 .. 5
 15. Archi 1 .. 5
 16. Archi 2 .. 5
 17. Archi 3 .. 5
 18. Navajo 1 .. 6
 19. Navajo 2 .. 6
 20. Navajo 3 .. 6
 21. Navajo 4 .. 6
 22. Navajo 5 .. 7
 23. Sierra Popoluca 1 7
 24. Sierra Popoluca 2 7
 25. Sierra Popoluca 3 8
 26. Sierra Popoluca 4 8
 27. Sierra Popoluca 5 9
 28. Sierra Popoluca 6 9
 29. Sierra Popoluca 7 9
 30. Active Systems .. 9
 31. Basque .. 10
 32. Guaraní .. 10
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.</td>
<td>Primitive Argument Types (Dixon and Comrie) 1</td>
<td>11</td>
</tr>
<tr>
<td>34.</td>
<td>Primitive Argument Types (Dixon and Comrie) 2</td>
<td>11</td>
</tr>
<tr>
<td>35.</td>
<td>Active Accusative Systems: Eastern Pomo</td>
<td>12</td>
</tr>
<tr>
<td>36.</td>
<td>Anti-active Systems</td>
<td>12</td>
</tr>
<tr>
<td>37.</td>
<td>German’</td>
<td>12</td>
</tr>
<tr>
<td>38.</td>
<td>More Splits: Person-Based Split Ergativity</td>
<td>13</td>
</tr>
<tr>
<td>40.</td>
<td>Syntactic Ergativity 1</td>
<td>13</td>
</tr>
<tr>
<td>41.</td>
<td>Syntactic Ergativity 2</td>
<td>14</td>
</tr>
<tr>
<td>42.</td>
<td>Syntactic Ergativity 3</td>
<td>14</td>
</tr>
<tr>
<td>43.</td>
<td>Topic Chaining: English</td>
<td>15</td>
</tr>
<tr>
<td>44.</td>
<td>Topic Chaining: Dyirbal</td>
<td>15</td>
</tr>
<tr>
<td>45.</td>
<td>Topic Chaining: Chukchi</td>
<td>15</td>
</tr>
<tr>
<td>46.</td>
<td>Ergative vs. Accusitive – Strategies for Analysis</td>
<td>15</td>
</tr>
<tr>
<td>47.</td>
<td>Argument Realization Approaches</td>
<td>16</td>
</tr>
<tr>
<td>48.</td>
<td>Marantz’ Analysis 1</td>
<td>16</td>
</tr>
<tr>
<td>49.</td>
<td>Marantz’ Analysis 2</td>
<td>17</td>
</tr>
<tr>
<td>50.</td>
<td>Minimalist Analyses 1</td>
<td>17</td>
</tr>
<tr>
<td>51.</td>
<td>Sketch of an Analysis in Chomsky (1993) 1</td>
<td>17</td>
</tr>
<tr>
<td>52.</td>
<td>Sketch of an Analysis in Chomsky (1993) 2</td>
<td>18</td>
</tr>
<tr>
<td>53.</td>
<td>Sketch of an Analysis in Chomsky (1993) 3</td>
<td>18</td>
</tr>
<tr>
<td>54.</td>
<td>Sketch of an Analysis in Chomsky (1993) 4</td>
<td>18</td>
</tr>
<tr>
<td>55.</td>
<td>Sketch of an Analysis in Chomsky (1993) 5</td>
<td>18</td>
</tr>
<tr>
<td>56.</td>
<td>Minimalist Analyses 2</td>
<td>19</td>
</tr>
<tr>
<td>57.</td>
<td>Minimalist Analyses 3</td>
<td>19</td>
</tr>
<tr>
<td>58.</td>
<td>Optimality Theoretic Analyses</td>
<td>20</td>
</tr>
<tr>
<td>59.</td>
<td>Criteria for Explanatory Adequacy</td>
<td>20</td>
</tr>
</tbody>
</table>

2 Optimality Theory

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Basic Question</td>
<td>23</td>
</tr>
<tr>
<td>2.</td>
<td>Optimality Theoretic Analyses</td>
<td>23</td>
</tr>
<tr>
<td>3.</td>
<td>Literature</td>
<td>24</td>
</tr>
<tr>
<td>4.</td>
<td>Background: Optimality Theory</td>
<td>24</td>
</tr>
<tr>
<td>5.</td>
<td>Optimality Theory: Definitions</td>
<td>24</td>
</tr>
<tr>
<td>6.</td>
<td>Organization of the Grammar</td>
<td>25</td>
</tr>
<tr>
<td>7.</td>
<td>Tableaux</td>
<td>25</td>
</tr>
<tr>
<td>8.</td>
<td>Important Concepts 1</td>
<td>26</td>
</tr>
<tr>
<td>9.</td>
<td>Important Concepts 2</td>
<td>26</td>
</tr>
<tr>
<td>11.</td>
<td>Woolford (2001) on Dative Subjects 1</td>
<td>27</td>
</tr>
<tr>
<td>12.</td>
<td>Woolford (2001) on Dative Subjects 2</td>
<td>27</td>
</tr>
</tbody>
</table>
3 The Minimalist Program

1. Overview 41
2. Bobaljik’s (1993) Analysis 41
3. Ergativity in Yup’ik 41
5. The Obligatory Case Parameter 42
6. Clause Structure 42
7. Transitive Clauses: Ergative and Accusative Patterns 43
8. Intransitive Clauses: Accusative Patterns 43
9. Intransitive Clauses: Ergative Patterns 43
10. Argument Realization 43
11. Basque Reciprocals 44
12. Abkhaz Reflexive Agreement 44
13. Inuit Reflexive Possessives 45
| 14. | Russian Reflexive Possessives | 45 |
| 15. | Weak Crossover | 45 |
| 16. | Active Argument Encoding Patterns 1 | 46 |
| 17. | Active Argument Encoding Patterns 2 | 46 |
| 18. | Potential Problems | 47 |
| 22. | Clause Structure | 48 |
| 23. | Remarks on Clause Structure | 48 |
| 24. | Assumptions about Case Assignment 1 | 49 |
| 25. | Assumptions about Case Assignment 2 | 49 |
| 26. | Further Prerequisites | 50 |
| 27. | Example | 50 |
| 28. | Accusative pattern: crossing paths | 51 |
| 29. | Ergative pattern: nesting paths | 51 |
| 30. | The System | 51 |
| 31. | Consequences 1 | 52 |
| 32. | Consequences 2 | 52 |
| 33. | Consequences 3 | 53 |
| 34. | Procrastinate | 53 |
| 35. | Transitive Clauses, Accusative Pattern | 53 |
| 36. | Transitive Clauses, Ergative Pattern | 53 |
| 37. | Intransitive Clauses | 54 |
| 38. | Consequences: Chomsky/Bobaljik vs. Murasugi | 54 |
| 39. | Intransitive Clauses: Unergative Verbs | 54 |
| 40. | Intransitive Clauses: Unaccusative Verbs | 55 |
| 41. | Active Patterns | 55 |
| 42. | Potential Problems | 55 |
| 44. | Bittner & Hale (1996b): Background | 56 |
| 45. | Bittner & Hale (1996b): Basic Assumptions | 56 |
| 46. | Definitions 1 | 57 |
| 47. | Definitions 2 | 57 |
| 48. | Definitions 3 | 58 |
| 49. | Ergative/Absolutive Patterns in Transitive Contexts 1 | 58 |
| 50. | Ergative/Absolutive Patterns in Transitive Contexts 2 | 58 |
| 51. | Ergative/Absolutive Patterns in Transitive Contexts 3 | 59 |
| 52. | Ergative/Absolutive Patterns in Transitive Contexts 4 | 59 |
| 53. | Syntactic vs. Morphological Ergativity | 60 |
| 54. | Active Patterns | 60 |
| 55. | Why Ergative Patterns are Simpler | 60 |
| 56. | Towards Accusative Encoding Patterns | 61 |
4 A New Approach

1. Goal .. 65
2. Background Assumptions 1 65
3. Background Assumptions 2 66
4. Background Assumptions 3 66
5. Background Assumptions 4 66
6. Background Assumptions 5 67
7. Case and Agreement ... 67
8. Merge vs. Agree 1 .. 68
9. Merge vs. Agree 2: The Dilemma 68
10. An Optimality-Theoretic Solution 68
11. The Order of Elementary Operations 1 69
12. The Order of Elementary Operations 2 69
13. The Order of Elementary Operations 3 69
14. The Order of Elementary Operations 4 70
15. Case Feature Specifications in Numerations 70
16. How to Respect Feature Balance 71
17. Canonical Ergative Argument Encoding 1 71
18. Canonical Ergative Argument Encoding 2 72
19. Active Argument Encoding 1 72
20. Active Argument Encoding 2 72
21. Active Argument Encoding 3 73
22. Active Argument Encoding 4 73
23. Anti-Active Patterns 73
24. An Alternative ... 74
25. Independent Evidence 74
26. Syntactic Ergativity 1 74
27. Syntactic Ergativity 2 75
28. Further Issues: Split Ergativity, Three-Way Systems .. 75
29. Person-Based Splits .. 75
30. Tense/Aspect-Based Splits 76
31. Three-Way Systems .. 76
Chapter 1

Introduction

1. Introduction

2. Topic

The main question that we will address is how the core patterns of accusative
vs. ergative encoding of arguments (via case or agreement) are to be captured by
syntactic theory.

(1) Primary arguments: EXT(ERNAL) vs. INT(ERNAL):
 a. He is working
 \underline{Er} hat gearbeitet
 (he: EXT)
 b. He has arrived
 \underline{Er} ist angekommen
 (he: INT)
 c. She kissed him
 \underline{Sie} hat ihn geküsst
 (she: EXT, him: INT)

3. Arguments in the Grammar

Arguments show up in four domains of grammar:

- Argument structure
- Argument realization
- Argument encoding
- Argument interpretation

4. Argument Structure

Assumption:
The lexicon entries of the verbs in (1) involve (simplified) semantic forms as in (2).
Argument structures determine Θ-grids (via λ prefixation). Θ-roles are discharged by λ conversion (= Merge of Chomsky (1995, 2001)), from left to right.

(2) Argument structures (Bierwisch (1988), Wunderlich (1997), Heim & Kratzer (1998)):
 a. /work/: \(\lambda x [x \text{ WORKS}] \)
 b. /arrive/: \(\lambda x [x \text{ ARRIVES}] \)
 c. /kiss/: \(\lambda y [\underbrace{\lambda x}_{\Theta-Raster} [x \text{ KISSES } y]] \)

Convention:
The external Θ-role is underlined (Williams (1981)).

5. Argument Structure

1. A standard alternative to the system in (2) relies on (a) Θ-grids as simple hierarchies of Θ-roles (see Chomsky (1981)).

(3) /kiss/: \[
\begin{array}{c|c}
\text{x} & \text{y} \\
\hline
\text{AGENT} & \text{PATIENT}
\end{array}
\]

2. There are many other theories of argument structure around; see, e.g, Reinhardt (2003), Borer (2004).

6. Argument Realization

From lexicon to syntax:
An argument bearing an internal Θ-role is merged within VP in the syntax, an argument bearing an external Θ-role is merged outside of VP in the syntax: it is merged as the specifier of a functional projection vP.

- The fact that such a mapping preserves the order relations among arguments comes for free in the approach adopted here; it can only be derived by additional linking rules in Chomsky’ (1981) approach. In the present approach, only the fact that an external argument is realized outside of vP must be stipulated.
7. Argument Realization

(4) Projection of arguments:

\[TP \rightarrow T' \]
\[T \rightarrow vP \]
\[NP_{ext} \rightarrow v' \]
\[V \rightarrow NP_{int} \]

8. Systems of Argument Encoding

Two parameters for the encoding of arguments by markers:
(i) nominative/accusative marking vs. ergative/absolutive marking
(ii) dependent-marking vs. head-marking (Nichols (1986))

Table 1: Accusative marking vs. ergative marking

<table>
<thead>
<tr>
<th>Accusative Pattern</th>
<th>Ergative Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>[NP_{ext-V_i}]</td>
<td>[NP_{ext-V_i}]</td>
</tr>
<tr>
<td>[NP_{int-V_i}]</td>
<td>[NP_{int-V_i}]</td>
</tr>
<tr>
<td>nom</td>
<td>erg</td>
</tr>
<tr>
<td>acc</td>
<td>abs</td>
</tr>
</tbody>
</table>

Terminology:
- \(V_i \) = intransitive verb
- \(V_t \) = transitive verb
- \(DP_{ext} \) = external argument DP
- \(DP_{int} \) = internal argument DP

9. Systems of Argument Encoding

Note on terminology:

- The notation here follows Plank (1995).
- Comrie’s (1989) system:

(5) a. \(NP_{ext-V_i}, NP_{int-V_i} = S \)
 b. \(NP_{ext-V_t} = A \)
c. \(NP_{int}-V_t = P \)

- Dixon’s (1994) system:

\[(6)\]
\[
a. \ NP_{ext}-V_t, \ NP_{int}-V_t = S
b. \ NP_{ext}-V_t = A
c. \ NP_{int}-V_t = O
\]

10. **Dependent-Marking vs. Head-Marking**

(7) *Dependent-marking vs. head-marking:*

\[
\begin{array}{c|c}
\text{NP-marker V} & \text{NP marker-V} \\
\end{array}
\]

- Argument encoding can proceed by case-marking on the DP argument ('dependent-marking') or by agreement-marking on the verb ('head-marking'); see Nichols (1986), Baker (1996). This difference is often taken to be orthogonal to the choice of encoding pattern. Accordingly, notions like ‘accusative’, ‘nominative’, ‘ergative’, and ‘absolutive’ are sometimes used indiscriminately for case- and agreement-marking (see, e.g., Bickel & Nichols (2001)). *CASE* is a possible cover term for both.

11. **Dependent-Marking vs. Head-Marking**

Table 2: Language types

<table>
<thead>
<tr>
<th>Language</th>
<th>Marking Type</th>
<th>Pattern Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Icelandic</td>
<td>nominative/accusative marking</td>
<td>dependent marking</td>
</tr>
<tr>
<td>Archi</td>
<td>ergative/absolutive marking</td>
<td>dependent marking</td>
</tr>
<tr>
<td>Navajo</td>
<td>nominative/accusative marking</td>
<td>head marking</td>
</tr>
<tr>
<td>Sierra Popoluca</td>
<td>ergative/absolutive marking</td>
<td>head marking</td>
</tr>
</tbody>
</table>

12. **Language Types**

13. **Icelandic 1**

Indoeuropean, Iceland; speakers < 250,000.

Generalization:

Icelandic employs an accusative case-marking pattern (plus head-marking for nominative: agreement).
14. Icelandic 2

(8) *Intransitive verbs in Icelandic:*

a. Sól-Ø=in skín-Ø
sun-SG.NOM=DET.SG.FEM.NOM shine-3.SG
‘The sun shines.’ (Kress (1982, 263))

b. Ólaf-ur byrja-Ø-i of sein-t
Olaf-SG.NOM begin-PAST-3.SG too late-3.SG.NEUT
‘Olaf began too late.’

(9) *Transitive verbs in Icelandic:*

Ólaf-ur las-Ø bók-Ø=ina
Olaf-SG.NOM read.PAST-3.SG book-SG.ACC=DET.SG.FEM.ACC
‘Olaf read the book.’ (Sigurðsson (2002b, 698))

15. Archi 1

North Caucasian language, Russia (Daghestan); speakers < 1000

Generalization:
Archi employs an ergative case-marking pattern (plus head-marking for absolutive: agreement – I–III: noun classes; case markers bear number information).

16. Archi 2

(10) *Intransitive verbs in Archi:*

a. Dija-Ø w-ir𝑥ᵢ in
father:LSG-ABS LSG-work

b. Buwa-Ø d-ir𝑥ᵢ in
mother:II-SG-ABS II-SG-work
‘Father/mother is working.’

c. Dija-Ø w-arxar-ši w-i
father:LSG-ABS LSG-lie-GER LSG-Aux

d. Buwa-Ø d-arxar-ši d-i
mother:II-SG-ABS II-SG-lie-GER LSG-Aux
‘Father/mother is lying.’ (Kibrik (1979, 67))

17. Archi 3

(11) *Transitive verbs in Archi:*

Chapter 1. Introduction

18. Navajo 1

Athabaskan language, USA (Arizona, New Mexico, Utah); speakers < 150,000.

Generalization:
Navajo employs an accusative head-marking pattern.

19. Navajo 2

Note:
Lexical DPs are usually optional in head-marking languages like Navajo (Jelinek (1984), Nichols (1986)); one may assume that primary arguments are nevertheless present in the syntax here, in the form of empty DP pronouns (see Baker (1996), Bruening (2001) for some of the options that arise under this general view). The Navajo agreement markers are usually called **subject** and **object** markers in the literature, and glossed here with the labels **nom** and **acc**; they are fusional and encode person and number in addition to **case**.

20. Navajo 3

(12) **Intransitive verbs in Navajo:**

a. (Y)i-sh-cha
 Ø-1.SG.NOM-cry
 ‘I am crying.’
 (Speas (1990, 209))

b. Shi (y)i-sh-áal
 Ø-1.SG.NOM-go
 ‘I am going.’
 (Bresnan (2001b, 167))

21. Navajo 4

(13) **Transitive verbs in Navajo:**

a. Ni-sh-ch’id
 2.SG.ACC-1.SG.NOM-scratch
 ‘I am scratching you.’
22. Navajo 5

b. Shí-t-ní-gháád
 1.SG.ACC-PERF-2.SG.NOM-shake
 ‘You shook me.’ (Speas (1990, 209))

c. Hastói ashkii dayiiltśą
 Men boy PL-3.SG.ACC-3.SG.NOM-saw
 ‘The men saw the boy.’ (Speas (1990, 211))

d. Ashkii at’eéd yiyiiltśą
 Boy girl 3.SG.ACC-3.SG.NOM-saw
 ‘The boy saw the girl.’ (Speas (1990, 215))

e. Ashkii yiyiiltśą
 boy 3.SG.ACC-3.SG.NOM-saw
 ‘He/she/it saw the boy.’ (Speas (1990, 214))

22. Navajo 5

(14) Morphological markers for argument encoding in Navajo

<table>
<thead>
<tr>
<th>Person</th>
<th>NOM marker (‘SUBJECT marker’)</th>
<th>ACC marker (‘OBJECT marker’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.sg.</td>
<td>sh</td>
<td>sh</td>
</tr>
<tr>
<td>2.sg.</td>
<td>ni</td>
<td>ni</td>
</tr>
<tr>
<td>3.sg./pl.</td>
<td>0</td>
<td>yi (bi)</td>
</tr>
<tr>
<td>1.d/pl.</td>
<td>iíd</td>
<td>níí</td>
</tr>
<tr>
<td>2.d/pl.</td>
<td>oh</td>
<td>níí</td>
</tr>
</tbody>
</table>

23. Sierra Popoluca 1

Mixe-Zoque language, Mexico (Isthmus of Tehuantepec, Veracruz, Soteapan: ‘Soteapan Zoque’); speakers < 30,000.

Generalization:
Sierra Popoluca employs an ergative head-marking pattern.

24. Sierra Popoluca 2

Observation:
As in Navajo, lexical DPs are optional (a general property of head-marking languages). Elson (1960b) calls the agreement markers ASSOCIATE, PARTICIPANT; Marlett (1986) identifies the basic ergative marking pattern and calls the markers A, B. The agreement markers also indicate person, but not number; the latter
plays a minor role in Sierra Popoluca morpho-syntax (Elson (1960b, 209/218)).

25. Sierra Popoluca 3

(15) *Intransitive verbs in Sierra Popoluca:*

a. A-nik-pa
 1. ABS-go-UNV
 ‘I am going.’

b. A-pišiű
 1. ABS-man
 ‘I am a man.’

c. Ta-hoxy-pa
 1. INCL.ABS-take a walk-UNV
 ‘You and I take a walk.’

d. Ō-Wiʔ-k-pa
 3. ABS-eat-UNV
 ‘He is eating.’

e. Ō-Nik-pa šiwan
 3. ABS-go-UNV John
 ‘John is going.’

f. Ō-Koʔ-c-ta-p šiwan
 3. ABS-hit-PASS-UNV John
 ‘John is being hit.’

(Elson (1960b, 208))

26. Sierra Popoluca 4

(16) *Transitive verbs in Sierra Popoluca:*

a. A-Ō-kοʔ-c-pa
 1. ABS-3.ERG-hit-UNV
 ‘He is hitting me.’

b. Ō-Aŋ-kοʔ-c-pa
 3. ABS-1.ERG-hit-UNV
 ‘I am hitting him.’

c. M-aŋ-kοʔ-c-pa
 2. ABS-1.ERG-hit-UNV
 ‘I am hitting you.’

d. Ō-I-kοʔ-c-pa
 3. ABS-3.ERG-hit-UNV
 ‘He is hitting him.’

(Elson (1960b, 208))

e. Ō-I-kοʔ-c-yah-pa
 3. ABS-3.ERG-hit-3.PL-UNV
 ‘They are hitting him.’ / ‘He is hitting them.’ / ‘They are hitting them.’

(Elson (1960b, 209))
27. Sierra Popoluca 5

Table 3: Morphological markers for the encoding of arguments in Sierra Popoluca

<table>
<thead>
<tr>
<th></th>
<th>ABS</th>
<th>ERG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>an</td>
</tr>
<tr>
<td>1_incl</td>
<td>ta</td>
<td>tan</td>
</tr>
<tr>
<td>2</td>
<td>mi</td>
<td>in</td>
</tr>
<tr>
<td>3</td>
<td>()</td>
<td>i</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ABS ← ERG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 → 2</td>
<td>m(i)-an</td>
</tr>
<tr>
<td>2 → 1</td>
<td>a-(i)n</td>
</tr>
</tbody>
</table>

28. Sierra Popoluca 6

Observation:
The ergative markers show up in two additional contexts: as possessive markers in NPs (see Benveniste (1974), Anderson (1992)), and with the distribution of a nominative marker in an accusative pattern, in certain kinds of embedded clauses (in temporal adverbial clauses without a Spanish adverb, and in some clauses that are dependent on intransitive verbs).

29. Sierra Popoluca 7

(17) Ergative markers as possessive markers in Sierra Popoluca:
 a. an-tik
 1.ERG-house
 ‘my house’
 b. M-an-hatuŋ
 2.ABS-1.ERG-father
 ‘You are my father.’

(18) Ergative markers in adverbial embedded clauses in Sierra Popoluca:
 mu an-nik
 when 1.ERG-go
 ‘als I went

(Elson (1960b, 208), Marlett (1986, 364))

30. Active Systems

Observation:
In addition to the canonical pattern in table 1, language may choose to treat NP_{ext} and NP_{int} differently in intransitive contexts: an active system of split ergativity (‘Split-S’, ‘Fluid-S’ in Dixon’s (1994) system).
Table 4: Active marking

<table>
<thead>
<tr>
<th>NP_{ext}V_{i}</th>
<th>NP_{int}V_{j}</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP_{ext}V_{i}</td>
<td>NP_{int}V_{j}</td>
</tr>
<tr>
<td>erg</td>
<td>abs</td>
</tr>
</tbody>
</table>

31. Basque

Language isolate, Spain/France; speakers < 700,000

Generalization:
Basque employs an active ergative case-marking pattern.

(19) Intransitive and transitive verbs in Basque:
 a. Jon-Ô etorri da
 Jon-ABS come:PTCP.PRF be:3.SG.INTR
 ‘Jon came.’
 b. Jon-ek saltatu du
 Jon-ERG jump:PTCP.PRF have:3.SG.TR
 ‘Jon jumped.’
 c. Jon-ek ardo-a-Ô ekarri du
 Jon-ERG wine-DET-ABS bring:PTCP.PRF have:3.SG.TR
 ‘Jon brought the wine.’ (Hualde & Ortiz de Urbina (2003, 364))

32. Guarani

Tupi-Guarani language, Paraguay; speakers < 5,000,000

Generalization:
Guarani employs an active ergative head-marking pattern.

(20) Intransitive and transitive verbs in Guarani:
 a. Še-manu?a
 1.SG.ABS-remmember
 ‘I remember.’
 b. A-ma.apo
 1.SG.ERG-work
 ‘I work.’
 c. Ô-Ai-pete
 3.SG.ABS-1.SG.ERG-hit
33. **Primitive Argument Types (Dixon and Comrie) 1**

(21) *Comrie’s (1989) system:*

a. $S = \text{NP}_{ext}V_t$, $\text{NP}_{int}V_i$

b. $A = \text{NP}_{ext}V_t$

c. $P = \text{NP}_{int}V_t$

“The discussion [...] is based on Comrie (1978b). Very similar ideas, though with certain differences in terminology, emphasis, and concept, are given independently in Dixon (1979).”

(Comrie (1989, 123))

(22) *Dixon’s (1994) system:*

a. $S = \text{NP}_{ext}V_t$, $\text{NP}_{int}V_i$

b. $A = \text{NP}_{ext}V_t$

c. $O = \text{NP}_{int}V_t$

“A survey of the literature shows that the letters S, A and O (which were first used in Dixon 1968, then Dixon 1972) are the most common symbols used for the three primitives. However, some scholars use P (for patient) in place of O (e.g. Comrie 1978).”

(Dixon (1994, 6))

34. **Primitive Argument Types (Dixon and Comrie) 2**

Claim (Dixon (1994, 6)):

“All languages work in terms of three *primitive* relations:” S, A, O.

However:

(23) “Since each grammar must include semantically contrastive marking for A and O, this can usefully be applied also to S – those S which are semantically similar to A [...] will be S_a, marked like A, and those S which are semantically similar to O [...] will be S_o, marked like O.”

(Dixon (1994, 70))

Conclusion:

Neither Comrie’s nor Dixon’s system is particularly well designed vis-a-vis the goal of describing active marking patterns. What can be done? There are several possibilities:

- S_a, S_o are further primitives.
- NP_{ext}, NP_{int}, V_t, V_i are the true primitives.
35. Active Accusative Systems: Eastern Pomo

Extinct, Hokan (California).
Ref.: Bittner & Hale (1996b).

(24) *Intransitive and transitive verbs in Eastern Pomo:*
 a. Múp múp-al sáaka
 he.NOM him-ACC killed
 ‘He killed him.’
 b. Múp-al xáa baakúma
 him-ACC in the water fell
 ‘He fell in the water (accidentally).’
 c. Múp káluluya
 he.NOM went home
 ‘He went home.’

36. Anti-active Systems

Another logical possibility (that suggests itself given active ergative marking patterns) is not attested.

Accusative language with accusative marking of NP_{ext-V_t}.

Table 5: Anti-active marking

<table>
<thead>
<tr>
<th>Anti-active pattern</th>
<th>NP_{ext-V_t}</th>
<th>NP_{int-V_t}</th>
</tr>
</thead>
<tbody>
<tr>
<td>nom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>acc</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

37. German’

(25) *Anti-active language:*
 a. Ihn hat gearbeitet (ihn: EXT)
 himACC has worked
 ‘He has worked.’
 b. Er ist hingefallen (er: INT)
 he.NOM is fallen
 ‘He fell.’
 c. Sie hat ihm geküsst (sie: EXT, ihn: INT)
 she.NOM has himACC kissed
 ‘She kissed him.’

Observation and functional explanation (Bechert (1979)):
Such languages do not seem to exist. They ensure a differentiation of NP_{ext} and
NP_{int} in V_t contexts (the minimum requirement for argument encoding systems); however, they are extremely dysfunctional because there is no implicational relation between case and argument type (external/internal) in this marking system.

38. More Splits: Person-Based Split Ergativity

Person-based split ergativity in Dyirbal:
In Dyirbal, NP_{ext} of V_t is marked ergative (-γγu) if it is a 3rd person pronoun or an item to the right of it on the person/animacy scale in (26). NP_{int} of V_t is marked accusative (-na) if it is a 1st or 2nd person pronoun. All other types of argument NP remain without an overt marker (see Dixon (1972, 1994)).

(26) *Person/animacy scale* (Silverstein (1976), Aissen (1999)):
1st person pronoun > 2nd person pronoun > 3rd person pronoun > proper name > common noun, human > common noun, animate > common noun, inanimate

Tense-/Aspect-based split ergativity.

- In Burushaski past tense contexts, ergative case shows up on DP_{ext} of V_t; other arguments are not overtly marked. In other contexts, there is no case marker whatsoever; but there is a fairly fixed constituent order and agreement marking to some extent (see Dixon (1994) and references cited there).

- In Hindi perfective aspect contexts, DP_{ext} of V_t is marked with ergative case; other DPs are not overtly marked. In other contexts, DP_{int} of V_t is marked with accusative case; other DPs are not marked (see, e.g., Mahajan (1990)).

40. Syntactic Ergativity 1

Note:
So far, the notion of “subject” has played no role. However, there are operations that refer to such a concept, e.g.: reflexivization, raising, control, imperative formation, relativization, topic chaining (‘pivot-chaining’; Dixon (1972, 1994)).

Side remark:
Dixon (1994) uses the notions *subject* and *pivot*, for S/A- and S/O-groupings in “underlying structure” (subject) and “derived structures” (pivot), respectively. The latter case includes clause combining (e.g., via conjunction).
41. Syntactic Ergativity 2

Accusative pattern:
In accusative languages, it is typically the nominative argument that has subject properties (e.g., in German). Normally, the nominative argument is the highest (or single) argument. However, if the highest argument is a non-nominative argument, as it may be, e.g., in Icelandic oblique (quirky) subject constructions, then this latter argument can also have subject properties.

(27) Raising of dative subjects in Icelandic:

\[
\begin{align*}
\text{Barn-i=m} & \quad \text{virð-i-st} & \quad \text{hafa} & \quad \text{batn-að} \\
\text{child-SG.DAT=DET.SG.NEUT.DAT seem-3.SG-PASS to have recover-SUP} \\
\text{veik-i=n} & \\
\text{illness-SG.NOM=DET.SG.FEM.NOM} \\
\end{align*}
\]

'The child seems to have recovered from the illness.' \hspace{1cm} (Andrews (1982, (53-b)))

42. Syntactic Ergativity 3

Ergative pattern:
In ergative systems, there are two possibilities: Either the highest argument NP, or the argument NP that is marked with absolute case, can exhibit subject properties:

1. morphological ergativity: except for \text{CASE} marking, the syntax treats $NP_{\text{ext/int-V}_i}$ and $NP_{\text{int-V}_i}$ on a par

2. syntactic ergativity: as with \text{CASE} marking, the syntax treats $NP_{\text{ext/int-V}_i}$ and $NP_{\text{int-V}_i}$ on a par.

- Aruchi, Basque, Warlpiri: morphological ergativity
- Dyirbal (at least as a tendency): syntactic ergativity
- Chukch: optionality
- Inuit: Some operations select the highest argument as the subject, and other operations select the absolutive argument.

43. **Topic Chaining: English**

(28) a. Father saw mother
 b. Father/mother returned
 c. Father$_1$ saw mother$_2$ and e_1/*e_2 returned
 d. Father$_1$ returned and mother$_2$ saw *e_1/*e_2

Observation:
Argument realization and argument encoding go hand in hand.

44. **Topic Chaining: Dyirbal**

(29) a. ṱuma banaga-nu
 father-ABS return-NONFUT
 ‘Father returned.’
 b. yabu banaga-nu
 mother-ABS returned-NONFUT
 ‘Mother returned.’
 c. ṱuma yabu-ngu bura-n
 father-ABS mother-ERG see-NONFUT
 ‘Mother saw father.’
 d. ṱuma banaga-nu yabu-ngu bura-n
 father-ABS return-NONFUT mother-ERG see-NONFUT
 ‘Father$_1$ returned and mother$_2$ saw him$_1$.’
 e. ṱuma yabu-ngu bura-n banaga-nu
 father-ABS mother-ERG see-NONFUT return-NONFUT
 ‘Mother saw father and he returned.’

Observation:
Argument realization and argument encoding go hand in hand: syntactic ergativity.

45. **Topic Chaining: Chukchi**

(30) aṭlay-e talaywanen ekak ank?am ekvety?i
 father-ERG he-hit-him son-ABS and he-went.away
 ‘The father hit the son, and the father/the son went away.’

Observation:
Argument realization and argument encoding may diverge: optional syntactic ergativity.

46. **Ergative vs. Accusive – Strategies for Analysis**

Theoretical options:
1. **Argument realization:**
 Accusative and ergative encoding patterns involve different types of argument realization (i.e., a different projection of argument structures into syntax). *Argument encoding* in the syntax can then take place in a uniform way.

2. **Argument encoding:**
 Accusative and ergative encoding patterns involve identical types of *argument realization*. However, the systems of morphological encoding of arguments in the syntax are different.

Predictions:

- Argument realization \rightarrow *syntactic* ergativity/accusativity
- Argument encoding \rightarrow *morphological* ergativity/accusativity

47. Argument Realization Approaches

This is the classical type of analysis in theoretical syntax. The hypothesis that a difference in argument realization is responsible for the ergative/accusative parameter comes in two versions a *strong* and a *weak* one.

- Ergative and accusative languages project the primary arguments of the verb in a different order. \rightarrow Marantz (1984)
- Ergative and accusative languages project the primary arguments of the verb differently, but in the same order. \rightarrow Nash (1996)

48. Marantz’ Analysis 1

A language may choose between the generalizations in (31) and (32).

(31) Accusative pattern:
 a. AGENT Θ-role \leftarrow assigned by predicate
 b. THEME/PATIENT Θ-role \leftarrow assigned by verb

(32) Ergative pattern:
 a. AGENT Θ-role \leftarrow assigned by verb
 b. THEME/PATIENT Θ-role \leftarrow assigned by predicate

Terminology:

- “assigned by verb” = merged in VP (= internal argument)
- “assigned by predicate” = merged outside of VP (in SpecvP) (= external argument)
49. Marantz’ Analysis 2

Consequences:

1. There are enormous syntactic differences with respect to the relation between a verb and its arguments between the two language types.

2. Morphological ergativity always implies syntactic ergativity. (“On the definition just given, many of the languages called ergative in the literature turn out to be nominative-accusative. These languages distribute case marking in such a way that, for the most part, the correspondence between semantic roles and case marking matches that for a true ergative language”; Marantz (1984, 196-197))

3. Strictly speaking, an active encoding pattern is predicted for ergative systems.

50. Minimalist Analyses 1

- The cases of primary arguments are determined by two different syntactic heads K_1, K_2 (e.g.: $K_1 = \text{Agr}_S$, $K_2 = \text{Agr}_o$). The two language types are identical with respect to V_1 contexts; in V_1 contexts, there are differences. Only K_2 is “activated” in ergative languages, and only K_1 is “activated” in accusative languages.

1. ERG, NOM $\rightarrow K_1$
2. ABS, ACC $\rightarrow K_2$

(Chomsky (1993), Bobaljik (1993), Laka (1993), Rezac (2003))

51. Sketch of an Analysis in Chomsky (1993) 1

(33) Phrase Structure:
52. **Sketch of an Analysis in Chomsky (1993) 2**

Assumptions:

1. Agreement and (structural) case are manifestations of specifier/head relations: \(<NP, \text{Agr}>\)

2. Two occurrences of \(\text{Agr}\) nodes are required for two NPs in VP (without lexical case).

3. Case properties in \(\text{Agr}\) domains are determined by both \(\text{Agr}\) and \(V,T\): There is head movement of \(V\) to \(\text{Agr}_O\), and of \(T\) to \(\text{Agr}_S\).

4. \(\text{NP}_{int}\) moves to Spec\(\text{Agr}_O\) and checks case there; \(\text{NP}_{ext}\) moves to Spec\(\text{Agr}_S\) and checks case there.

53. **Sketch of an Analysis in Chomsky (1993) 3**

(34) **Ergative/Absolutive Parameter:**

a. If only one NP in VP needs structural case, only one of the two \(\text{Agr}\) nodes is active (the other one is inert or missing): \(\text{Agr}_S\) or \(\text{Agr}_O\).

b. Accusative pattern: \(\text{Active Agr}_S\)
 - NP shares properties with the subject of a transitive context.

c. Ergative pattern: \(\text{Active Agr}_O\)
 - NP shares properties with the object of a transitive context.

54. **Sketch of an Analysis in Chomsky (1993) 4**

Chomsky’s Analysis as an argument encoding approach:

Chomsky (1993, 9-10):

“These are the only two possibilities, mixtures apart. The distinction between the two language types reduces to a trivial question of morphology, as we expect. Note that from this point of view, the terms nominative, absolutive, and so on, have no substantive meaning apart from what is determined by the choice of “active” vs. “inert” Agr; there is no real question as to how these terms correspond across language types.”

55. **Sketch of an Analysis in Chomsky (1993) 5**

Problem (Comrie (1989), Dixon (1994)):

- Accusative case and ergative case are typically *morphologically more marked.*
56. Minimalist Analyses 2

- The cases of primary arguments are determined by two different syntactic heads K_1, K_2 ($K_1 = I$, $K_2 = V$). In ergative languages, K_1 determines ergative case, and K_2 does not determine a structural case. In accusative languages, K_1 does not determine a structural case, and K_2 determines accusative case. The remaining (or single) argument receives C-related default case ('K-Filter').

1. ERG $\rightarrow K_1$
2. ACC $\rightarrow K_2$
3. NOM, ABS \rightarrow Default

(Bittner & Hale (1996a))

57. Minimalist Analyses 3

- The cases of primary arguments are determined by two different syntactic heads K_1, K_2 (e.g.: $K_1 = Agr_s$, $K_2 = Agr_o$). In V_i contexts, the two language types are identical (only K_1 can determine case). In V_i contexts, K_2 is “strong” in ergative languages; and K_1 is “strong” in accusative languages.

Assumption: Strong K attracts the highest NP argument.

Consequence: Embedded vs. nesting paths in ergative vs. accusative languages.
1. ERG, ACC → K₂
2. NOM, ABS → K₁

(Murasugi (1992), Jelinek (1993))

58. Optimality Theoretic Analyses

Optimality Theoretic Analyses:

- \(\text{ERG}_{\text{trans}} \succ *\text{ERG} \) in ergative languages
- \(*\text{ERG} \succ \text{ERG}_{\text{trans}} \) in accusative languages

(35) \(\text{ERG}_{\text{trans}} \):
The highest NP argument of a transitive verb bears ergative case.

(36) \(*\text{ERG} \):
NP arguments must not bear ergative case.

Note:
(i) \(\text{ERG}_{\text{trans}} \) may be viewed as either a markedness constraint or a faithfulness constraint (see Heck et al. (2002)).
(ii) \(*\text{ERG} \) is a markedness constraint.

Ref.: (Kiparsky (1999), Stiebels (2000), Woolford (2001), Lee (2003))

59. Criteria for Explanatory Adequacy

Possible criteria for theory formation:

1. There are no construction-specific rules for cases like ERG, ACC.
2. The projection of arguments from lexicon to syntax is uniform across languages.
3. There are no semantically irrelevant projections like Agr\(_{a}\)P, Agr\(_{o}\)P (Chomsky (1995, 2001)).
4. Case assignment is independent of movement (Chomsky (2000, 2001)).
5. (a) ERG, ACC → internal structural case (K₂)
(b) NOM, ABS → external structural case (K₁)
6. Internal case is generally morphologically more marked; external case often remains without overt marking (Comrie (1989), Dixon (1994)).
Chapter 2

Optimality Theory

1. Basic Question

How can existing patterns of argument encoding be derived from theories of case and agreement?

<table>
<thead>
<tr>
<th>Accusative Pattern</th>
<th>Ergative Pattern</th>
<th>Active Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>(NP_{ext}V_i)</td>
<td>(NP_{ext}V_i)</td>
<td>(NP_{ext}V_i)</td>
</tr>
<tr>
<td>(NP_{int}V_i)</td>
<td>(NP_{int}V_i)</td>
<td>(NP_{int}V_i)</td>
</tr>
<tr>
<td>Nom</td>
<td>Acc</td>
<td>Erg</td>
</tr>
<tr>
<td>(NP_{ext}V_t)</td>
<td>(NP_{ext}V_t)</td>
<td>(NP_{ext}V_t)</td>
</tr>
<tr>
<td>(NP_{int}V_t)</td>
<td>(NP_{int}V_t)</td>
<td>(NP_{int}V_t)</td>
</tr>
<tr>
<td>Erg</td>
<td>Abs</td>
<td>Erg</td>
</tr>
</tbody>
</table>

(Icelandic, Navajo) (Archi, Sierra Popoluca) (Basque, Guaraní)

1. split ergativity based on argument-type (Dyirbal)
2. split ergativity based on tense/aspect (Hindi)
3. split ergativity based on clause type (Sierra Popoluca) clause-type based

2. Optimality Theoretic Analyses

Answer given in Optimality Theory (Prince & Smolensky (2004), Smolensky & Legendre (2006)):

All natural languages obey exactly the same constraints on argument encoding. For instance:

(1) a. All languages have a constraint that requires \(NP_{ext}V_t \) to be marked by \textit{ergative} CASE.

b. All languages have a constraint that requires \(NP_{int}V_t \) to be marked by \textit{accusative} CASE.

However: Constraints are violable and ranked. Different constraint rankings produce different grammars with different argument encoding systems.
3. Literature

Relevant literature:

- Kiparsky (1999)
- Wunderlich (2000)
- Stiebels (2000, 2002)
- Woolford (2001)
- Lee (2003)

4. Background: Optimality Theory

(2) Basic assumptions:
 a. Constraints are *violable.*
 b. Constraints are *ranked.*
 c. Constraints are *universal.*
 d. Wellformedness (grammaticality) of a linguistic expression is decided by a *competition* of forms: The candidate with the best constraint profile in a given candidate set is optimal (= grammatical), all other candidates are suboptimal (= ungrammatical).

5. Optimality Theory: Definitions

(3) *Optimality:* A candidate C_i is optimal (= grammatical) iff there is no candidate C_j in the same candidate set that has a better constraint profile.

(4) *Constraint Profile:* A candidate C_j has a better constraint profile than a candidate C_i iff there is a constraint Con_k such that (a) and (b) hold:
 a. C_j satisfies Con_k better than C_i.
 b. There is no constraint Con_l ranked higher than Con_k on which C_i and C_j differ.

Note: C_j satisfies a constraint Con better than C_i iff C_j has fewer violations of Con. This implies the case that C_i violates Con once (or more often), and C_j does not violate Con at all.
6. Organization of the Grammar

\[
\text{Input} \rightarrow \text{Gen(erator)} \rightarrow \text{H(armony-)}\text{E}val(uation)
\]

(generates candidates) (determines optimal candidate)

This presupposes that in addition to the constraints employed by the Gen component, which are inviolable and unranked, the H-Eval component relies on a system of constraints that are violable and ranked (and, by assumption, universal) in order to determine the best constraint profile, hence, optimality. The ranking among the violable local constraints of the H-Eval component is indicated by the symbol \(\gg\); the H-Eval constraints themselves are typically written with small capitals. Optimality-theoretic competitions are often illustrated by tables (so-called \textit{tableaux}); optimality of a candidate is indicated by the pointing finger (here: \(\rightarrow\)); violation of a constraint is shown by a star * in the appropriate column of the table; if this violation is fatal for a candidate (i.e., responsible for its suboptimality), an exclamation mark ! is added. In the abstract H-Eval competition in table \(T_{2.1}\), in which the candidate set consists of \(C_1\)–\(C_5\), \(C_1\) emerges as the optimal candidate: It avoids a violation of the high-ranked constraints A and B (unlike \(C_3\)–\(C_5\)), and it minimizes a violation of the low-ranked constraint C (unlike \(C_2\)). Hence, there is no competing candidate with a better constraint profile than \(C_1\).

7. Tableaux

\(T_{2.1}: \text{Determining optimality}\)

<table>
<thead>
<tr>
<th>Candidates</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rightarrow C_1)</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>(C_2)</td>
<td></td>
<td>**!</td>
<td></td>
</tr>
<tr>
<td>(C_3)</td>
<td>*!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_4)</td>
<td></td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>(C_5)</td>
<td>*!</td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

\(T_{2.2}: \text{Reranking}\)

<table>
<thead>
<tr>
<th>Candidates</th>
<th>A</th>
<th>C</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_1)</td>
<td>*!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_2)</td>
<td>*!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\rightarrow C_3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_4)</td>
<td></td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>(C_5)</td>
<td></td>
<td>*!</td>
<td>*</td>
</tr>
</tbody>
</table>

\[\]
8. Important Concepts 1

Constraint reranking = parametrization:
By reranking the constraints B and C in $T_{2,1}$, candidate C_3 emerges as the optimal candidate. Reranking of constraints forms the basis of the concept of parametrization in optimality-theoretic syntax.

Non-cumulativity:
A further characteristic feature of this approach is that it is essentially non-cumulative; i.e., no number of violations of a low-ranked constraint can outweigh a single violation of a higher-ranked constraint. Thus, suppose that there were an additional, lowest-ranked constraint D in $T_{2,1}$ that C_1 violates, say, five times, and that C_2–C_5 do not violate at all. This would not undermine C_1’s optimality.

9. Important Concepts 2

Candidates and candidate sets:

1. The input defines the candidate set (for present purposes).
2. The competing candidates are phrase-structure trees (sentences)

Two types of constraints:

1. markedness constraints
2. faithfulness constraints

10. Woolford’s (2001) Analysis

Background assumptions:

1. There are (ordered) markedness constraints that block the realization of cases.
2. There are faithfulness constraints that demand the realization of case specifications in the input (lexical, inherent case).
3. Nominative/absolutive and accusative are structural cases; dative and ergative (and genitive) are inherent cases (that must be specified on a verb).
4. Every NP must be case-marked.
11. Woolford (2001) on Dative Subjects 1

(5) a. *DAT ("*Dative"): Avoid dative case.
 b. *Acc ("*Accusative"): Avoid accusative case.
 c. *Nom ("*Nominative"): Avoid nominative case.
 d. Faith-Lex: Realize a case feature specified on V in the input.
 e. Faith-Lex\textsubscript{trans}: Realize a case feature specified on transitive V in the input.

12. Woolford (2001) on Dative Subjects 2

(6) a. Ranking in Icelandic: Faith-Lex\textsubscript{tr} \triangleright Faith-Lex \triangleright *DAT \triangleright *Acc \triangleright *Nom
 b. Ranking in Japanese: Faith-Lex\textsubscript{tr} \triangleright *DAT \triangleright Faith-Lex \triangleright *Acc \triangleright *Nom
 c. Ranking in English: *DAT \triangleright Faith-Lex\textsubscript{tr} \triangleright Faith-Lex \triangleright *Acc \triangleright *Nom

(7) a. Bátnum hvoflídi
 boat\textsubscript{dat} capsized
 b. Barniru bætaði veikin
 child\textsubscript{dat} recovered from disease\textsubscript{nom}

$T_{2.3}$: Intransitive V in Icelandic; inherent dative

<table>
<thead>
<tr>
<th>Candidates</th>
<th>Faith-Lex\textsubscript{tr}</th>
<th>Faith-Lex</th>
<th>*DAT</th>
<th>*ACC</th>
<th>*Nom</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rightarrow C_1$: NP\textsubscript{dat} V\textsubscript{[+dat]}</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_2: NP\textsubscript{nom} V\textsubscript{[+dat]}</td>
<td></td>
<td>*\</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>C_3: NP\textsubscript{acc} V\textsubscript{[+dat]}</td>
<td></td>
<td>*\</td>
<td></td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

(8) a. Akatyan-ga/*ni moo arukeru
 baby\textsubscript{nom/dat} already walk can
Chapter 2. Optimality Theory

T2.4: Transitive V in Icelandic; inherent dative on NP_{ext}

<table>
<thead>
<tr>
<th>Candidates</th>
<th>Faith-Lex_tr</th>
<th>Faith-Lex_{#Dat}</th>
<th>Faith-Lex_{#Acc}</th>
<th>Faith-Lex_{#Nom}</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ C1: NP_{dat} V_{[+dat]} NP_{nom}</td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>C2: NP_{dat} V_{[+dat]} NP_{acc}</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>C3: NP_{nom} V_{[+dat]} NP_{acc}</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

b. Taroo-ni eigo-ga hanaseru
 Taro_{dat} English_{nom} speak can

T2.5: Intransitive V in Japanese; no inherent dative

<table>
<thead>
<tr>
<th>Candidates</th>
<th>Faith-Lex_tr</th>
<th>Faith-Lex_{#Dat}</th>
<th>Faith-Lex_{#Acc}</th>
<th>Faith-Lex_{#Nom}</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ C1: NP_{dat} V_{[+dat]}</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2: NP_{nom} V_{[+dat]}</td>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>C3: NP_{acc} V_{[+dat]}</td>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

T2.6: Transitive V in Japanese; inherent dative on NP_{ext}

<table>
<thead>
<tr>
<th>Candidates</th>
<th>Faith-Lex_tr</th>
<th>Faith-Lex_{#Dat}</th>
<th>Faith-Lex_{#Acc}</th>
<th>Faith-Lex_{#Nom}</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ C1: NP_{dat} V_{[+dat]} NP_{nom}</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2: NP_{dat} V_{[+dat]} NP_{acc}</td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>C3: NP_{nom} V_{[+dat]} NP_{acc}</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

15. Woolford (2001) on Ergative Patterns: 1

(9) *Erg (“*Ergative”):
 Avoid ergative case.

Note:

1. *Erg is ranked high in languages with an accusative argument encoding system.
2. The ergative is an inherent case; it must be specified for an external argument on V (and it can be specified only for an external argument).

(10) Standard ergative pattern: Niuean (Polynesian)
 a. Ko e tohitohi a au (he) mogo-nei
 PRES write NOM I on time this
 ‘I am writing at the moment.’
b. To lagomatai he ekekafo a ia
 FUT help ERG doctor NOM him
 ‘The doctor will help him.’ (Seiter (1980))

(11) *Active ergative pattern: Basque (Isolate):*
(12) *Intransitive and transitive verbs in Basque:*
 a. Jon-Ø etorri da
 Jon-ABS come:PTCP.PRF be:3.SG.INTR
 ‘Jon came.’
 b. Jon-ek saltatu du
 Jon-ERG jump:PTCP.PRF have:3.SG.TR
 ‘Jon jumped.’
 c. Jon-ek ardo-a-Ø ekarri du
 Jon-ERG wine-DET-ABS bring:PTCP.PRF have:3.SG.TR
 ‘Jon brought the wine.’ (Hualde & Ortiz de Urbina (2003, 364))

17. Woolford (2001) on Ergative Patterns: 3

(13) a. *Ranking in Niuean (standard ergative pattern):*
 FAITH-LEX$_{tr}$ $>$ *ERG $>$ FAITH-LEX
b. *Ranking in Basque (active ergative pattern):*
 FAITH-LEX$_{tr}$ $>$ FAITH-LEX $>$ *ERG
c. *Ranking in English (accusative pattern):*
 *ERG $>$ FAITH-LEX$_{tr}$ $>$ FAITH-LEX

$T_{2.7}$: Intransitive V in Niuean; no ergative on NP$_{ext}$

<table>
<thead>
<tr>
<th>Candidates</th>
<th>FAITH-LEX$_{tr}$</th>
<th>*ERG</th>
<th>FAITH-LEX</th>
<th>*ACC</th>
<th>*NOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rightarrow C_2$: NP${nom}$ V${[+erg]}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$T_{2.8}$: Transitive V in Niuean; inherent ergative on NP$_{ext}$

<table>
<thead>
<tr>
<th>Candidates</th>
<th>FAITH-LEX$_{tr}$</th>
<th>*ERG</th>
<th>FAITH-LEX</th>
<th>*ACC</th>
<th>*NOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rightarrow C_1$: NP${erg}$ V${[+erg]}$ NP$_{nom}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_2: NP${erg}$ V${[+erg]}$ NP$_{acc}$</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_3: NP${nom}$ V${[+erg]}$ NP$_{acc}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[T_{2.9}: \text{Intransitive V in Basque; inherent ergative on } NP_{ext} \]

<table>
<thead>
<tr>
<th>Candidates</th>
<th>FAITH-LEX\textsubscript{tr}</th>
<th>FAITH-LEX</th>
<th>*ERG</th>
<th>*ACC</th>
<th>*NOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rightarrow C_1: NP_{erg} \ V_{[+erg]})</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_2: NP_{nom} \ V_{[+erg]})</td>
<td></td>
<td></td>
<td>*!</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[T_{2.10}: \text{Transitive V in Niuean; inherent ergative on } NP_{ext} \]

<table>
<thead>
<tr>
<th>Candidates</th>
<th>FAITH-LEX\textsubscript{tr}</th>
<th>FAITH-LEX</th>
<th>*ERG</th>
<th>*ACC</th>
<th>*NOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rightarrow C_1: NP_{erg} \ V_{[+erg]} \ NP_{nom})</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_2: NP_{erg} \ V_{[+erg]} \ NP_{acc})</td>
<td></td>
<td></td>
<td>*</td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>(C_3: NP_{nom} \ V_{[+erg]} \ NP_{acc})</td>
<td></td>
<td></td>
<td>*!</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(14) \textit{Aspect-based split ergativity in Hindi}

a. Raam to\textit{tii} khaataa thaa
 Ram.MASC-NOM bread.FEM-ACC eat.IMP.MASC be.PAST.MASC
 ‘Ram (habitually) ate bread.’

b. Raam-ne ro\textit{tii} khaayii thii
 Ram-ERG bread-NOM eat.PERF.FEM be.PAST.FEM
 ‘Ram had eaten bread.’ \hspace{1cm} (Mahajan (1990))

Assumptions:

1. There is another constraint FAITH-LEX\textsubscript{perf}.

2. Not all verbs with an external argument NP have an ergative case feature for this argument (this handles exceptions).

3. FAITH-LEX\textsubscript{perf} is the only FAITH-LEX constraint outranking *ERG in Hindi.

(15) Ranking in \textit{Hindi}:

\hspace{1cm} \text{FAITH-LEX\textsubscript{perf} } \gg \text{*ERG } \gg \text{FAITH-LEX, *ACC}

22. Woolford (2001) on Person-based Splits

\textit{Person-based split ergativity in Dyirbal}:

In Dyirbal, NP\textsubscript{ext} of \(V_t\) is marked ergative (-\textit{ygu}) if it is a 3rd person pronoun
or an item to the right of it on the person/animacy scale. NP$_{int}$ of V$_t$ is marked accusative (-na) if it is a 1st or 2nd person pronoun. All other types of argument NP remain without an overt marker (see Dixon (1972, 1994)).

Assumption (p. 534, following Comrie):
“All transitive subjects in Dyirbal have ergative Case that is simply not morphologically realized on first- and second-person pronouns.”
(p. 535): “My conclusion is that (virtually) all subject splits (and some object splits) involve an alternation between realizing or not realizing one abstract Case.”

Background assumptions (Wunderlich, Kiparsky):

1. Θ-roles are characterized by contextual features derived from argument structures (that involve lexical decomposition): $\{\pm hr, \pm lr\}$ (‘there is a higher role; there is a lower role’).

2. Cases are defined in terms of the same primitive features; cases match Θ-role specifications as much as possible (specificity).

(16) Θ-roles in lexical entries of verbs:
 a. sleep: $<\theta_1>$
 $[-hr,-lr]$
 b. read: $<\theta_1, \theta_2>$
 $[-hr,+lr] \quad [+hr,-lr]$
 c. give: $<\theta_1, \theta_2, \theta_3>$
 $[-hr,+lr] \quad [+hr,+lr] \quad [+hr,-lr]$

24. Cases in Lexical Decomposition Grammar

(17) Cases:

<table>
<thead>
<tr>
<th></th>
<th>NOM</th>
<th>ACC</th>
<th>ERG</th>
<th>DAT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$[-]$</td>
<td>$[+hr]$</td>
<td>$[+lr]$</td>
<td>$[+hr][+lr]$</td>
</tr>
</tbody>
</table>

(18) Faithfulness constraints:
 a. IDENT([hr]):
 The value of a [hr] feature of a Θ-role α in the input must not conflict with the value of the [hr] feature of an argument bearing α in the output.
b. **IDENT(\(h_r\)):**
 The value of a \(h_r\) feature of a \(\Theta\)-role \(\alpha\) in the input must not conflict with the value of the \(h_r\) feature of an argument bearing \(\alpha\) in the output.

c. **MAX(\(+h_r\)):**
 A \(+h_r\) specification of a \(\Theta\)-role \(\alpha\) in the input must appear on the argument bearing \(\alpha\) in the output.

d. **MAX(\(+l_r\)):**
 A \(+l_r\) specification of a \(\Theta\)-role \(\alpha\) in the input must appear on the argument bearing \(\alpha\) in the output.

(19) **Markedness constraints**

a. \(\ast h_r\):
 \(+h_r\) must not appear in the output.

b. \(\ast l_r\):
 \(+l_r\) must not appear in the output.

c. **UNIQUENESS:** A case can show up only once per clause.

Predictions:

- If there were only faithfulness constraints, every language would have both ergative (for NP_{ext-\(V_t\)}) and accusative (for NP_{intr-\(V_t\)}) for the arguments of transitive verbs.

- Nominative should always be optimal for the sole argument of an intransitive verb.

- Dative should always be optimal for the intermediate argument with ditransitive verbs.

Markedness constraints ensure that these consequences can sometimes be avoided: \(\ast h_r\) blocks accusative; \(\ast l_r\) blocks ergative.
27. Deriving Specificity Effects 1

\(T_{2.11} \): Accusative pattern: transitive verbs

<table>
<thead>
<tr>
<th>read: ([-hr, +lr], [+hr, -lr])</th>
<th>IDENT([-[hr]])</th>
<th>IDENT([-[lr]])</th>
<th>MAX([-[hr]])</th>
<th>MAX([-[lr]])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rightarrow C_1:) NP_nom NP_acc V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_2:) NP_nom NP_nom V</td>
<td>*!</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_3:) NP_acc NP_nom V</td>
<td>*!</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>(C_4:) NP_acc NP_acc V</td>
<td>*!</td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>(C_5:) NP_nom NP_dat V</td>
<td>*!</td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>(C_6:) NP_dat NP_acc V</td>
<td>*!</td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>(C_7:) NP_dat NP_dat V</td>
<td>*!</td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>(\rightarrow C_8:) NP_erg NP_acc V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

28. Deriving Specificity Effects 2

\(T_{2.12} \): Accusative pattern: ditransitive verbs

<table>
<thead>
<tr>
<th>give: ([-hr, +lr], [+hr, +lr], [-hr, -lr])</th>
<th>IDENT([-[hr]])</th>
<th>IDENT([-[lr]])</th>
<th>MAX([-[hr]])</th>
<th>MAX([-[lr]])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rightarrow C_1:) NP_nom NP_dat NP_acc V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_2:) NP_nom NP_acc NP_acc V</td>
<td></td>
<td></td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>(C_3:) NP_nom NP_dat NP_nom V</td>
<td></td>
<td></td>
<td>*!</td>
<td>*</td>
</tr>
<tr>
<td>(C_4:) NP_nom NP_acc NP_acc V</td>
<td></td>
<td></td>
<td>*!</td>
<td>*</td>
</tr>
<tr>
<td>(C_5:) NP_nom NP_dat NP_dat V</td>
<td></td>
<td></td>
<td>*!</td>
<td>*</td>
</tr>
<tr>
<td>(C_6:) NP_dat NP_dat NP_acc V</td>
<td></td>
<td></td>
<td>*!</td>
<td>*</td>
</tr>
<tr>
<td>(C_7:) NP_acc NP_dat NP_acc V</td>
<td></td>
<td></td>
<td>*!</td>
<td>*</td>
</tr>
</tbody>
</table>
29. Deriving Specificity Effects 3

\[T_{2.13}: \text{Ergative pattern: transitive verbs} \]

\[
\begin{array}{|c|c|c|c|}
\hline
\text{read: } & \text{NP} & \text{NP} & \text{NP} \\
\rightarrow C_1: & \text{NP}_{\text{erg}} & \text{NP}_{\text{nom}} & V \\
C_2: & \text{NP}_{\text{nom}} & \text{NP}_{\text{nom}} & \text{NP}_{\text{nom}} \\
C_3: & \text{NP}_{\text{acc}} & \text{NP}_{\text{nom}} & \text{NP}_{\text{nom}} \\
C_4: & \text{NP}_{\text{acc}} & \text{NP}_{\text{acc}} & \text{NP}_{\text{nom}} \\
C_5: & \text{NP}_{\text{nom}} & \text{NP}_{\text{erg}} & V \\
\sim C_6: & \text{NP}_{\text{erg}} & \text{NP}_{\text{acc}} & V \\
\hline
\end{array}
\]

\[T_{2.14}: \text{Nominaive/accusative pattern} \]

\[
\begin{array}{|c|c|c|c|}
\hline
\text{V: } & \text{NP} & \text{NP} & \text{NP} \\
\rightarrow C_1: & \text{NP}_{\text{nom}} & \text{NP}_{\text{acc}} & V \\
C_2: & \text{NP}_{\text{erg}} & \text{NP}_{\text{nom}} & \text{NP}_{\text{nom}} \\
C_3: & \text{NP}_{\text{erg}} & \text{NP}_{\text{nom}} & \text{NP}_{\text{acc}} \\
C_4: & \text{NP}_{\text{nom}} & \text{NP}_{\text{nom}} & \text{NP}_{\text{nom}} \\
\hline
\end{array}
\]

\[T_{2.15}: \text{Ergative/absolute pattern} \]

\[
\begin{array}{|c|c|c|c|}
\hline
\text{V: } & \text{NP} & \text{NP} & \text{NP} \\
\rightarrow C_1: & \text{NP}_{\text{nom}} & \text{NP}_{\text{acc}} & V \\
C_2: & \text{NP}_{\text{erg}} & \text{NP}_{\text{nom}} & \text{NP}_{\text{nom}} \\
C_3: & \text{NP}_{\text{erg}} & \text{NP}_{\text{nom}} & \text{NP}_{\text{acc}} \\
C_4: & \text{NP}_{\text{nom}} & \text{NP}_{\text{nom}} & \text{NP}_{\text{nom}} \\
\hline
\end{array}
\]

\[\sim \text{Under which rankings are } C_3 \text{ and } C_4 \text{ predicted to become optimal?} \]

31. Stiebels (2000; 2002) on Splits 1

Strategy:

The existing constraints are relativized with respect to certain features. The more fine-grained versions of the constraints (which are ranked higher than the general versions) then derive (e.g.) person-based split ergativity in Dyirbal and aspect-based split ergativity in Hindi.

(20) Some further constraints:

Notes:

1. In contrast to what we have seen with Woolford (2001), this implies that, e.g., first and third person NP_ext-V’s have a different case in Dyirbal.

2. Kiparsky (1999) has an opposite constraint with a similar effect; see (21).

(21) $\text{Max}(+lr)/+\text{perf}$:

‘Realize ergative marking in perfect contexts.’

33. Lee’s (2003) Analysis

The analysis is developed within OT-LFG (Bresnan (2001a), Sells (2001)). An assumption taken over from work in LFG is that cases (or case markers) have core meanings.

(22) ERG:

a. highest argument role
b. volitional agent
c. causer

(23) ACC:

a. not highest argument role
b. proto-patient

(24) DAT:

a. goal
b. sentence
c. not a volitional agent
d. not a causer

(25) NOM: –

34. Lee (2003) on Hindi 1

What we have seen so far (Woolford (2001)):
(26) *Aspect-based split ergativity in Hindi*

a. Raam toTii khaataa thaa
 Ram. MASC-NOM bread. FEM-ACC eat. IMP. MASC be. PAST. MASC
 ‘Ram (habitually) ate bread.’

b. Raam-ne roTii khaayii thii
 Ram-ERG bread-NOM eat. PERF. FEM be. PAST. FEM
 ‘Ram had eaten bread.’ (Mahajan (1990))

However, upon closer inspection the situation is a bit more complicated.

35. **Lee (2003) on Hindi 2**

Four classes of verbs (based on Mohanan (1994)):

<table>
<thead>
<tr>
<th>verb type</th>
<th>perfective</th>
<th>imperfective</th>
</tr>
</thead>
<tbody>
<tr>
<td>class 1 (agentive transitive V)</td>
<td>erg</td>
<td>nom</td>
</tr>
<tr>
<td>class 2 (unergative intransitive V)</td>
<td>erg/nom</td>
<td>nom</td>
</tr>
<tr>
<td>class 3 (unaccusative intransitive V)</td>
<td>nom</td>
<td>nom</td>
</tr>
<tr>
<td>class 4 (unaccusative transitive V)</td>
<td>dat</td>
<td>dat</td>
</tr>
</tbody>
</table>

Note:

- (class 1): V in (26) belongs to class 1.
- (class 2): “Ergative case is conditioned by the semantic property of volitional participation in the action, not transitivity.”

36. **Lee (2003) on Hindi 3**

(27) *Class 2 (non-volitional vs. volitional) in perfective contexts:*

a. Raam-do acaanak sēr dīk āa. Vah/*us-ne
 Ram-DAT suddenly lion-NOM appear. PERF he-NOM/*he-ERG cillaayaa.
scream. PERF
 ‘Ram suddenly saw a lion. He screamed.’

b. Us-ne/*vah jaanbuujākar cillaayaa.
 he-ERG /*he-NOM deliberately shout PERF
 ‘He shouted deliberately.’

(28) *Class 3 (unaccusative) in perfective contexts:*

Raam/*Raam-ne giraa.
Ram-NOM/*Ram-ERG fall PERF
‘Ram fell hard.’

37. Lee (2003) on Hindi 4: Constraints

(29) Constraints (order indicates ranking in Hindi):
 a. IDENT(Sem):
 Semantic features must not change their values from input (argument structure) to output (case marker).
 b. MAX/DEP(GOAL):
 A [GOAL] specification can neither be added nor deleted from input to output.
 c. ERG\textsubscript{perf}:
 The highest argument role in a perfective clause must be in the ergative.
 d. *ERG:
 Avoid ergative case markers.
 e. MAX(VOL):
 A feature [VOL] in the input (argument structure) is realized in the output (case marker).
 f. *SUBJ/DAT:
 Avoid dative case markers for subjects.
 g. *NOM:
 Avoid nominative case markers.
38. Lee (2003) on Hindi 5: Class 1/2a

\[T_{2,16}: \text{Class 1/2a: imperfective} \]

<table>
<thead>
<tr>
<th>(V(\Theta_1(\Theta_2)))</th>
<th>(\text{IDENT})</th>
<th>(\text{MAX/DEP})</th>
<th>(\text{ERG})</th>
<th>(\text{*ERG})</th>
<th>(\text{MAX})</th>
<th>(\text{*SUB})</th>
<th>(\text{*NOM})</th>
</tr>
</thead>
<tbody>
<tr>
<td>([+\text{VOL}])</td>
<td>([+\text{VOL}])</td>
<td>(\text{(*!)})</td>
</tr>
<tr>
<td>(C_1: \text{NP}_{ext-\text{ERG}}[+\text{VOL}])</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_2: \text{NP}_{ext-\text{NOM}})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_3: \text{NP}_{ext-\text{DAT}}[-\text{VOL},+\text{GOAL}])</td>
<td>(\text{(*!)})</td>
<td>(\text{(*!)})</td>
<td>(\text{(*!)})</td>
<td>(\text{(*!)})</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[T_{2,17}: \text{Class 1/2a: perfective} \]

<table>
<thead>
<tr>
<th>(V(\Theta_1(\Theta_2)))</th>
<th>(\text{IDENT})</th>
<th>(\text{MAX/DEP})</th>
<th>(\text{ERG})</th>
<th>(\text{*ERG})</th>
<th>(\text{MAX})</th>
<th>(\text{*SUB})</th>
<th>(\text{*NOM})</th>
</tr>
</thead>
<tbody>
<tr>
<td>([+\text{VOL}])</td>
<td>([+\text{VOL}])</td>
<td>(\text{(*)})</td>
<td>(\text{(*)})</td>
<td>(\text{(*)})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_1: \text{NP}_{ext-\text{ERG}}[+\text{VOL}])</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_2: \text{NP}_{ext-\text{NOM}})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_3: \text{NP}_{ext-\text{DAT}}[-\text{VOL},+\text{GOAL}])</td>
<td>(\text{(*!)})</td>
<td>(\text{(*)})</td>
<td>(\text{(*)})</td>
<td>(\text{(*)})</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\rightarrow \]

\[B_{2,16}: \text{Class 1/2b: perfective} \]

<table>
<thead>
<tr>
<th>(V(\Theta_1(\Theta_2)))</th>
<th>(\text{IDENT})</th>
<th>(\text{MAX/DEP})</th>
<th>(\text{ERG})</th>
<th>(\text{*ERG})</th>
<th>(\text{MAX})</th>
<th>(\text{*SUB})</th>
<th>(\text{*NOM})</th>
</tr>
</thead>
<tbody>
<tr>
<td>([+\text{VOL}])</td>
<td>([+\text{VOL}])</td>
<td>(\text{(*)})</td>
<td>(\text{(*)})</td>
<td>(\text{(*)})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_1: \text{NP}_{ext-\text{ERG}}[+\text{VOL}])</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_2: \text{NP}_{ext-\text{NOM}})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_3: \text{NP}_{ext-\text{DAT}}[-\text{VOL},+\text{GOAL}])</td>
<td>(\text{(*)})</td>
<td>(\text{(*)})</td>
<td>(\text{(*)})</td>
<td>(\text{(*)})</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$T_{2,18}$: Class 2b/3: imperfective

<table>
<thead>
<tr>
<th>$V(\Theta_1)$</th>
<th>IDENT (Sem)</th>
<th>MAX/Dep (perf)</th>
<th>ERG (Sem)</th>
<th>MAX (Sem)</th>
<th>*SUBJ/DAT *NOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[-\text{VOL}]$</td>
<td>![image]</td>
<td>![image]</td>
<td>![image]</td>
<td>![image]</td>
<td>![image]</td>
</tr>
<tr>
<td>C1: NP_{ext}-ERG$[-\text{VOL}]$</td>
<td>!</td>
<td>![image]</td>
<td>![image]</td>
<td>![image]</td>
<td>![image]</td>
</tr>
<tr>
<td>\rightarrow C2: NP_{ext}-NOM</td>
<td>![image]</td>
<td>![image]</td>
<td>![image]</td>
<td>![image]</td>
<td>![image]</td>
</tr>
<tr>
<td>C3: NP_{ext}-DAT$[-\text{VOL}_n, +\text{GOAL}]$</td>
<td>![image]</td>
<td>![image]</td>
<td>![image]</td>
<td>![image]</td>
<td>![image]</td>
</tr>
</tbody>
</table>

$T_{2,19}$: Class 2b/3: perfective

<table>
<thead>
<tr>
<th>$V(\Theta_1)$</th>
<th>IDENT (Sem)</th>
<th>MAX/Dep (perf)</th>
<th>ERG (Sem)</th>
<th>MAX (Sem)</th>
<th>*SUBJ/DAT *NOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[-\text{VOL}]$</td>
<td>![image]</td>
<td>![image]</td>
<td>![image]</td>
<td>![image]</td>
<td>![image]</td>
</tr>
<tr>
<td>C1: NP_{ext}-ERG$[-\text{VOL}]$</td>
<td>!</td>
<td>![image]</td>
<td>![image]</td>
<td>![image]</td>
<td>![image]</td>
</tr>
<tr>
<td>\rightarrow C2: NP_{ext}-NOM</td>
<td>![image]</td>
<td>![image]</td>
<td>![image]</td>
<td>![image]</td>
<td>![image]</td>
</tr>
<tr>
<td>C3: NP_{ext}-DAT$[-\text{VOL}_n, +\text{GOAL}]$</td>
<td>![image]</td>
<td>![image]</td>
<td>![image]</td>
<td>![image]</td>
<td>![image]</td>
</tr>
</tbody>
</table>

40. Lee (2003) on Dyirbal

- Lee presents an analysis that is similar in its effects to the one developed by Stiebels. However, rather than relativizing the relevant constraints by adding person/argument type information, Lee relies on harmonic alignment and constraint conjunction, more or less as in Aissen (1999, 2003).

41. Conclusion 1

Do optimality-theoretic approaches to argument encoding meet the criteria for explanatory adequacy?

1. There are no construction-specific rules for cases like ERG, ACC.

2. The projection of arguments from lexicon to syntax is uniform across languages.

3. There are no semantically irrelevant projections like Agr$_P$P, Agr$_o$P (Chomsky (1995, 2001)).

4. Case assignment is independent of movement (Chomsky (2000, 2001)).

5. (a) ERG, ACC \rightarrow internal structural case (K$_2$)
(b) NOM, ABS \rightarrow external structural case (K_1)

6. Internal case is generally morphologically more marked; external case often remains without overt marking (Comrie (1989), Dixon (1994)).

42. **Conclusion 2**

Claim:

1. Existing optimality-theoretic analyses have problems with criterion (5) (it is not really clear why ergative and absolutive are mutually exclusive in the vast majority of languages).

2. Existing optimality-theoretic analyses all fail with respect to criterion (1): Some of the constraints are highly construction-specific. This may be taken to be indicative of a more general problem: The analyses are surface-oriented; there is little theoretical abstraction and, consequently, little progress towards explanatory adequacy.

An obvious example: Perfective environments in Hindi.

1. \textsc{faith-lex}_{perf} \quad (\text{Woolford (2001)})
2. \textit{*[+ lr]/[-perf]} \quad (\text{Stiebels (2000)})
3. Max([+lr]/[+perf]) \quad (\text{Kiparsky (1999)})
4. \textsc{erg}_{perf} \quad (\text{Lee (2003)})
Chapter 3

The Minimalist Program

1. Overview

Three minimalist analyses:

2. Bobaljik’s (1993) Analysis

3. Ergativity in Yup’ik

(1) Yup’ik (canonical ergative pattern):

a. Angute-m qusngiq ner-aa
 man-ERG reindeer-ABS eat-+TRANS.3s/3s
 ‘The man is eating the reindeer.’

b. Qusngiq ner’-uq
 reindeer-ABS eta—TRANS.3s
 ‘The reindeer is eating.’

Focus of Bobaljik (1993):
The three basic argument encoding patterns (ergative, accusative, active); not:
argument-type based, clause-type based, aspect/tense based splits.

The analysis follows Levin & Massam (1985), and particularly Chomsky (1993):
The cases of primary arguments are determined by two different syntactic heads
K₁, K₂ (e.g.: K₁ = Agrs, K₂ = Agro). The two language types are identical with
respect to V_t contexts; in V_t contexts, there are differences. Only K_2 is “activated” in ergative languages, and only K_1 is “activated” in accusative languages.

1. ERG, NOM \rightarrow K_1

2. ABS, ACC \rightarrow K_2

The morphological marking problem (Chomsky (1993)):
“The “active” element typically assigns a less-marked Case to its Spec.” (Chomsky (1993))

5. The Obligatory Case Parameter

2) Obligatory Case:
Case X is obligatorily assigned/checked.

3) Obligatory Case Parameter (OCP):
 a. In nominative/accusative languages, CASE X is nominative (= ERG).
 b. In ergative/absolutive languages, CASE X is absolutive (= ACC).

“Presumably, the observed morphological tendency towards null morphology for these Cases is a reflection of this obligatory status.” (Bobaljik (1993, 51))

6. Clause Structure

4) Clause Structure (assumed by Bobaljik (1993)):

\[\text{Agr-1 = NOM, ERG; “subject” AGREEMENT} \]
\[\text{Agr-2 = ACC, ABS; “object” AGREEMENT} \]
7. Transitive Clauses: Ergative and Accusative Patterns

(5) $NP_{ext}-V_i$ and $NP_{int}-V_i$ move to case positions in transitive clauses:

8. Intransitive Clauses: Accusative Patterns

(6) $NP_{ext}-V_i$ (or $NP_{int}-V_i$) moves to $Spec Agr_1$ in transitive clauses:

9. Intransitive Clauses: Ergative Patterns

(7) $NP_{ext}-V_i$ (or $NP_{int}-V_i$) moves to $Spec Agr_2$ in transitive clauses:

10. Argument Realization

Prediction:
Unless further assumptions are made, syntactic ergativity is not expected (argu-
ment realization is uniform).

(8) Reflexivization:
 a. Mary₁ saw herself₁/₂ (in the mirror)
 b. *Herself₁ saw Mary₁ (in the mirror)

(9) Principles A and B of Chomsky’s (1981) Binding Theory:
 a. A: An anaphor must be A-bound in its governing category.
 b. B: A pronoun must be A-free in its governing category.

(10) Binding.
 \(\alpha\) A-binds \(\beta\) iff (a) and (b) hold:
 a. \(\alpha\) and \(\beta\) are coindexed.
 b. \(\alpha\) c-commands \(\beta\).

Note: Reciprocals are anaphors in the sense of (9).

11. Basque Reciprocals

The evidence shows that the external argument binds the internal argument in transitive contexts, not vice versa.

(11) Reciprocals in Basque:
 a. mutil-ek elkar ikusi dute
 boys-ERG each other-ABS see AUX.3sA/3pE
 ‘The boys saw each other.’
 b. *elkar-rek mutil-ak ikusi ditu(zte)
 each other-ERG boys-ABS see AUX.3pA/3sE(3pE)
 ‘The boys saw each other.’

12. Abkhaz Reflexive Agreement

Abkhaz (North East Caucasian; Georgia) ensures argument encoding via head marking. Still, there is evidence that the NP_{ext} asymmetrically c-commands NP_{int}.

(12) Reflexive Agreement in Abkhaz:
 a. lxe y-l-ba-yt’
 3sf-head(n) 3snA-3sfE-see-PRES
 ‘She sees herself.’
 b. s-xe y-z-ba-yt’
 1s-head 3snA-1sE-see-PRES
 ‘I see myself.’
13. Inuit Reflexive Possessives

(13) *Inuit Reflexive Possessives:*

a. Piita-up anaana-\texttext{ni} nagligi-ja\texttext{a} Piita-ERG mother-POSS.3s/REFL/ABS love-3s/3s
 ‘Piita loves his mother.’ (his = Piita)

b. Piita-up anaana-\texttext{a} nagligi-ja\texttext{a} Piita-ERG mother-POSS.3s/ABS love-3s/3s
 ‘Piita loves his mother.’ (*his = Piita)

(14) *Impossible anaphoric binding into external arguments:*

a. *Anaana-\texttext{mi} Piita nagligi-ja\texttext{a} mother.3s/REFL/ERG Piita-ABS love-3s/3s
 ‘His\textsubscript{1} mother loves Piita\textsubscript{1}.’

b. Anaana-\texttext{ata} Piita nagligi-ja\texttext{a} mother.3s/ERG Piita-ABS love-3s/3s
 ‘His\textsubscript{1/2} mother loves Piita\textsubscript{1}.’

This is exactly the same pattern as in the accusative language Russian.

14. Russian Reflexive Possessives

(15) *Russian Reflexive Possessives:*

a. Oľga ljubit svoju mamu Oľga-NOM loves her.REFL-ACC mother-ACC
 ‘Oľga loves her mother.’ (her = Oľga)

b. Oľga ljubit eē mamu Oľga-NOM loves her-ACC mother-ACC
 ‘Oľga loves her mother.’ (*her = Oľga)

(16) *Impossible anaphoric binding into external arguments:*

a. *Svoja mama ljubit Oľgu her.REFL-NOM mother-NOM loves Oľga-ACC
 ‘Her\textsubscript{1} mother loves Oľga.’

b. Eē mama ljubit Oľgu her-NOM mother-NOM loves Oľga-ACC
 ‘Her\textsubscript{1/2} mother loves Oľga\textsubscript{1}.’

15. Weak Crossover

Weak crossover is a further diagnostic to determine argument hierarchies in syntax
(via asymmetric c-command).

(17) *Weak crossover in English:*
a. Who₁ t₁ loves his₁ mother?
b. *Who₂ did his₂ mother love t₂?

The same effect occurs in the ergative language Nisgha.

18. Weak crossover in Nisgha (Tsimshian, Western Canada):
 a. net ṭāx-sip’en-s naxʷ-t
 who-3E REL-love-DM mother-3s
 ‘Who₁ loves his₁ mother?’
 b. nēqat ṭi-sip’en-s naxʷ-t
 who-one ND FOC-love-DM mother-3s
 ‘Who₁ does his₁ mother love?’

16. Active Argument Encoding Patterns 1

A consequence of the analysis:

Ergative case can only be assigned in transitive environments. Therefore, active patterns (as in Basque, Guaraní, Hindi, Georgian) should not exist.

Bobaljik’s (1993) assumption (also see Laka (1993), Nash (1996), Bittner & Hale (1996b), and many others):

Unergatives are transitive!

In languages with an active ergative argument encoding pattern, what looks like an intransitive verb is in fact a transitive verb with a hidden object (which can, e.g., be overtly realized as a cognate object (‘dream a dream’)); sometimes the presence of the internal argument is indicated by overt agreement morphology (Basque).

Note:

This is in line with certain theories of argument structure, e.g., the approach taken in Hale & Keyser (2002).

Question: What about pure ergative encoding patterns, as in Yup’ik, Archi, Sierra Popoluca? In these languages, the internal argument of the relevant verbs is incorporated into V; hence, V becomes intransitive.

17. Active Argument Encoding Patterns 2

A minimal pair: Yup’ik vs. Basque. (Both languages are pro-drop languages; from the absence of an overt argument, one cannot tell whether it is present in syntax or not.)

19. Yup’ik:
 a. John-am ner-aa
 John-erg eat-3s/3s
 ‘John ate it.’

 not: ‘John ate.’
18. Potential Problems

b. John mer'uq
 John-ABS eat-3s
 "John ate."

(20) Basque
 a. Jon-ek jaten du
 Jon-ERG eat AUX
 "Jon ate it."
 b. Jon-ek jaten du
 Jon-ERG eat AUX
 "Jon ate."

18. Potential Problems

1. The correlation with morphological marking (ERG,ACC vs. NOM,ABS) is not straightforward.

2. Does the approach to active patterns based on Basque generalize to all languages that instantiate this pattern?

3. How can person-based, aspect-based, or clause-type based split ergativity be integrated into the analysis?

4. What about the well-established cases of syntactic ergativity?

5. The ergative/accusative parameter is closely tied to movement of NP arguments.

6. It is likely that NPs can check (or assign, or valuate) case without undergoing movement; see the concept of Agree in Chomsky (2001, 2005).

20. Murasugi (1992): Basic Assumptions 1

- The cases of primary arguments are determined by two different syntactic heads K_1, K_2 (e.g.: $K_1 = Ag_r$, $K_2 = Ag_o$). In V_1 contexts, the two language types are identical (only K_1 can determine case). In V_1 contexts, K_2 is "strong" in ergative languages; and K_1 is "strong" in accusative languages.

Assumption: Strong K attracts the highest NP argument.

Consequence: Embedded vs. nesting paths in ergative vs. accusative languages.
1. \text{ERG, ACC} \rightarrow K_2 \\
2. \text{NOM, ABS} \rightarrow K_1 \\

(Murasugi (1992), Jelinek (1993))

Murasugi’s (1992) main idea:

- The assumptions about syntactic phrase structure are similar to those made in Chomsky (1993), Bobaljik (1993).
- However, case assignment is reversed.
- \text{ergative = accusative, nominative = absolutive}.
- The distinction between crossing paths and nesting paths is crucial.

22. Clause Structure

(21) $\begin{array}{l}
\text{TP} \\
\quad \text{T'} \\
\quad \text{T} \quad \text{TrP} \\
\quad \text{Tr'} \\
\quad \text{Tr} \quad \text{VP} \\
\quad \text{NP}_{ext} \quad \text{V'} \\
\quad \text{V} \quad \text{NP}_{int}
\end{array}$

23. Remarks on Clause Structure

Murasugi’s phrase structure is modern; e.g., it anticipates the analysis in Chomsky (1993, 2001):

- Tr is nowadays usually called v.
- Agr$_O$ and Agr$_S$ are gone (cf. the meta-grammatical tenet that there can be no semantically uninterpretable functional projections; see Chomsky (1995)).
24. Assumptions about Case Assignment 1

Difference between TrP and vP:

- Tr checks/assigns *structural case* (so does v).
- Tr does not introduce an *external argument* \(\text{NP}_{\text{ext}}\) (in contrast to v).

24. Assumptions about Case Assignment 1

Accusative pattern:

1. T checks nominative (case and agreement).
2. Tr checks accusative (case and agreement).

Ergative pattern:

1. T checks absolutive (case and agreement).
2. Tr checks ergative (case and agreement).

Markedness:

1. The case that is checked by T is an unmarked case (morphologically less marked, or not marked at all; citation form).
2. The case that is checked by Tr is a marked case (morphologically more marked, not a citation form).

25. Assumptions about Case Assignment 2

- NPs bear case (including morphological markers); however, (structural) case must be checked.
- Case is checked by movement of an NP to the specifier of T/Tr.
- Case-driven movement takes place in the syntax (overtly) or at LF (= an abstract level of representation, i.e., covertly).
- Syntactic movement is triggered by *strong features*. LF movement is triggered by *weak features*.
26. Further Prerequisites

Φ-features:
1. Φ-features are located on NPs.
2. Φ-features are located on V, for all primary arguments (NP\textsubscript{ext}-V\textsubscript{t}, NP\textsubscript{ext}-V\textsubscript{i}, NP\textsubscript{int}-V\textsubscript{t}, NP\textsubscript{int}-Vi).
3. Φ-features are not located on T or Tr.
4. In order to check Φ-features of V and NP, V must undergo movement to F, and NP must undergo movement to SpecF (where F is a functional head).

Tense features:
1. T: [+tense] \rightarrow \text{finite clause}
2. T: [−tense] \rightarrow \text{non-finite clause}

Transitivity features:
1. Tr: [+trans] \rightarrow V takes two primary arguments.
2. Tr: [−trans] \rightarrow V takes one primary argument.

27. Example

(22)

\[
\begin{array}{c}
TP \\
 \swarrow \\
 T' \\
 \swarrow \\
T \\
 \swarrow \\
 TrP \\
 \swarrow \\
 [\text{nom, } +\text{tense}] \\
\phantom{[\text{nom, } +\text{tense}]} \swarrow \\
\phantom{[\text{nom, } +\text{tense}]} Tr' \\
 \swarrow \\
 Tr \\
 \swarrow \\
 [\text{acc, } +\text{trn}] \\
\phantom{[\text{acc, } +\text{trn}]} \swarrow \\
\phantom{[\text{acc, } +\text{trn}]} VP \\
 \swarrow \\
 NP\textsubscript{ext} \\
\phantom{NP\textsubscript{ext}} \swarrow \\
\phantom{NP\textsubscript{ext}} \text{Mary} \\
\phantom{\text{Mary}} \swarrow \\
\phantom{\text{Mary}} V' \\
 \swarrow \\
 V \\
 \swarrow \\
 \text{saw} \\
\phantom{\text{saw}} \swarrow \\
\phantom{\text{saw}} \phi_1, \phi_2 \\
 \swarrow \\
 [+\text{tense}, +\text{trn}] \\
\phantom{[+\text{tense}, +\text{trn}]} \swarrow \\
\phantom{[+\text{tense}, +\text{trn}]} NP\textsubscript{int} \\
\phantom{NP\textsubscript{int}} \swarrow \\
\phantom{NP\textsubscript{int}} \text{us} \\
\phantom{\text{us}} \swarrow \\
\phantom{\text{us}} \phi_1, \phi_2 \\
 \swarrow \\
 [\text{acc, } \phi_2] \\
\end{array}
\]
28. **Accusative pattern: crossing paths**

\[
\begin{array}{c}
(23)\\
TP \\
\quad \quad T' \\
\quad \quad T \quad TrP \\
\quad \quad \quad \quad Tr' \\
\quad \quad \quad \quad Tr \quad VP \\
\quad \quad \quad \quad \quad N_{\text{ext}} \\
\quad \quad \quad \quad \quad V' \\
\quad \quad \quad \quad \quad V \quad N_{\text{int}}
\end{array}
\]

29. **Ergative pattern: nesting paths**

\[
\begin{array}{c}
(24)\\
TP \\
\quad \quad T' \\
\quad \quad T \quad TrP \\
\quad \quad \quad \quad Tr' \\
\quad \quad \quad \quad Tr \quad VP \\
\quad \quad \quad \quad \quad N_{\text{ext}} \\
\quad \quad \quad \quad \quad V' \\
\quad \quad \quad \quad \quad V \quad N_{\text{int}}
\end{array}
\]

30. **The System**

\[(25) \text{ The ergative/accusative parameter:} \]

\[\quad a. \text{ The case feature of } T \text{ is strong in an accusative language.} \]

\[\quad b. \text{ The case feature of } Tr \text{ is strong in an ergative language.} \]
(26) *Economy principles* (moderately updated terminology):
 a. *Minimal Goal* (‘Closest Available Source’):
 At all levels of the derivation, a *probe* attracts the closest available NP.
 b. *Minimale Probe* (‘Closest Featured Target’):
 At all levels of the derivation, a *goal* NP must be moved to the closes available probe.
 c. *Procrastinate*:
 A syntactic operations applies as late as possible.
 (“Covert (LF) movement is cheaper than overt movement.”)

Note: “goal” here stands for the target of the operation, it does not refer to the Θ-role of the same name.

31. **Consequences 1**

Assumptions about case-driven movement of NPs:

- At a given level of representation, a goal NP has to be the NP that is closes to the minimal probe *before any movement takes place* in order to be eligible for movement.
- A goal NP has to be available for movement; i.e., it must not have checked its case features yet.

Consequence:

- Only one NP can undergo case-driven movement in overt syntax: NP$_{ext}$ (‘subject’).
- Case-driven movement of NP$_{int}$ (‘object’) takes place at LF.

32. **Consequences 2**

“Suppose that both T and Tr have strong Case features [...], requiring movement to their Specs at S-structure [...].” The closest NP to both T and Tr is [...] the subject. However, this NP cannot satisfy the feature requirements of both functional heads simultaneously. Therefore, unless something else is inserted in SpecT to satisfy T, the derivation will crash.” (p.25-26)

“At any one level, then, there will be neither Crossing nor Nested Paths (i.e., the result of both subject and object raising), but only independent movements of subjects to functional specs.”
33. Consequences 3

Comment:
This last consequence is potentially empirically problematic. However, closer inspection reveals that it is probably not essential.

- Given a minimally revised notion of availability in the definition of the economy principles in (26), both crossing and nesting paths are permitted on a single level or representation.

34. Procrastinate

Question:
Why is the constraint Procrastinate needed?

Answer:
Procrastinate ensures that movement that is triggered by weak features is confined to LF.

Note:
Movement of an internal argument NP$_{int}$ at LF may violate the Strict Cycle Condition (see Chomsky (1973)) (or the Extension Condition of Chomsky (1993)) verletzen.

35. Transitive Clauses, Accusative Pattern

(27) a. *Base structure before movement:
 $T_{[+tense],[nom]} Tr_{[+trn,acc]}$ | John saw Mary |

 b. Overt syntactic movement:
 $John_1 T_{[+tense],[nom]} Tr_{[+trn,acc]}$ | t_1 saw Mary |

 c. Mary$_2 T_{[+tense],[nom]} Tr_{[+trn,acc]}$ | John saw t_2 |

 d. Covert LF movement:
 $John_1 T_{[+tense],[nom]} Mary_2 Tr_{[+trn,acc]}$ | t_1 saw t_2 |

36. Transitive Clauses, Ergative Pattern

(28) Inuktitut (Inuit, SOV):
Jaani$_1$-up | t_1 tuktu-∅ | malik-p-a-a | Tr$_{[+trn,erg]}$
John-ERG Karibou-NOM follow-Ind-Tr-3sE,3sN

‘John followed the Karibou.’

(29) Mam (Maya, VSO):
ma 0-jaw t-tx‘ee?ma-n$_1$ Cheep$_2$ Tr$_{[+trn,erg]}$ | t_2 t_1 tzee? |
REC 3sN-DIR 3sE-cut-DS José tree
'José cut the tree.'

37. Intransitive Clauses

Prediction:

- There is movement of the sole NP argument (in need of case checking) to SpecT in both language types. The reason for this uniform behaviour is that Tr does not have a case feature in this context.

- In accusative systems, this movement operation takes place overtly. (Reason: the case feature of T is strong.)

- In ergative systems, this movement operation takes place covertly (at LF). (Reason: The case feature of T is weak.) (Note: Murasugi acknowledges that there might be a problem lurking here; see her footnote 21, p.40.)

38. Consequences: Chomsky/Bobaljik vs. Murasugi

Consequence:

Chomsky (1993), Bobaljik (1993):

1. Transitive constructions are identical in ergative and accusative argument encoding systems.

2. Intransitive constructions are different in ergative and accusative argument encoding systems.

Murasugi (1992):

1. Transitive constructions are different in ergative and accusative argument encoding systems.

2. Intransitive constructions are identical in ergative and accusative argument encoding systems.

39. Intransitive Clauses: Unergative Verbs

Assumption: NP_{ext} is merged in SpecV.

(30) _English:_

a. $T_{[+tense,nom]} \mid \text{John sang}$

b. $\text{John}_1 T_{[+tense,nom]} \mid t_1 \text{ sang}$

(31) _Inuktitut:_
40. Intransitive Clauses: Unaccusative Verbs

\[\text{Jaani pisuk-p-u-q} \] \(T_{[+\text{tense,nom}]} \)
\(\text{John-NOM} \) \(\text{go-IND-INTR-3sN} \)

‘John went.’

(32) \textit{Man}:
\text{ma O-beet\textsubscript{1}-T\textsubscript{[+tense,nom]} xu?j t\textsubscript{1} }
\text{REC 3sN-go woman}

‘The woman went.’

40. Intransitive Clauses: Unaccusative Verbs

Assumption: \(NP_{\text{int}} \) is merged in \textit{CompV}.

(33) \textit{Englisch}:
\begin{enumerate}
 \item \(T_{[+\text{tense,nom}]} \) \mbox{arrived the man}
 \item \(\text{the man}_{\text{1}} T_{[+\text{tense,nom}]} \) \(t\textsubscript{1} \) \mbox{arrived}
\end{enumerate}

(34) \textit{Jalaltec} (Maya):
\begin{enumerate}
 \item \(x\text{-}\text{O-}\text{i-ch-i} \) \mbox{munil}
 \(\text{ASP-3sN-begin-INTR work} \)
 \mbox{‘Work began.’}
 \item \(\text{ch-O-aw-i-ch-e} \) \mbox{munil}
 \(\text{ASP-3sN-2sE-begin-Tr work} \)
 \mbox{‘You begin the work.’}
\end{enumerate}

41. Active Patterns

Note:
As with Bobaljik (1993), ergative case for truly intransitive verbs is unexpected. The solution of this problem will have to be similar.

42. Potential Problems

1. The ergative/accusative parameter is closely tied to \textit{movement} of NP arguments.

2. It is likely that NPs can check (or assign, or valuate) case without undergoing movement; see the concept of \textit{Agree} in Chomsky (2001, 2005).

3. In contrast to Move, Agree does not dependent on \textit{strength} of features; cf. \textit{uninterpretability}, probe features.

4. Is it possible to come up with a similar model of parametrization under an Agree-based (rather than Move-based) approach?
5. Probably not: A violation of the *Strict Cycle Condition* will otherwise invariably occur in accusative languages.

6. Murasugi’s analysis can avoid this general problem only by assuming that case is checked on two separate levels of representation (S-structure, LF). If all case checking takes place on a single level of representation, there is a problem (compare the concept of *(multiple spell-out of phases)*).

43. Bittner & Hale’s (1996) Analysis

44. Bittner & Hale (1996b): Background

- The cases of primary arguments are determined by two different syntactic heads K_1, K_2 ($K_1 = I$, $K_2 = V$). In ergative languages, K_1 determines ergative case, and K_2 does not determine a structural case. In accusative languages, K_1 does not determine a structural case, and K_2 determines accusative case. The remaining (or single) argument receives C(omp)-related *default case* (*K-Filter*).

1. $\text{ERG} \rightarrow K_1$
2. $\text{ACC} \rightarrow K_2$
3. $\text{NOM}, \text{ABS} \rightarrow \text{Default}$

(Bittner & Hale (1996b))

45. Bittner & Hale (1996b): Basic Assumptions

Nominal arguments can be *KPs* (*Case phrases*), or DPs, or even bare NPs:

(35) \[[K_P \ K \ D \ [N_P \ N \ ... \]] \]

Clause Structure:
The external argument is merged by adjunction to VP; this produces a *small clause*. (Order is irrelevant here.)

(36) \[[C_P \ I \ V_P \ \{K_P/D_P\}_{ext} \ V_P \ \{K_P/D_P\}_{int} \]] \]

- In ergative systems, I Case-binds K_P_{ext}: ERG.
- In accusative systems, V Case-binds K_P_{int}: ACC.
- The remaining argument in a transitive context is a DP (rather than KP), which gets default Case from C.

56

Chapter 3. The Minimalist Program
46. Definitions 1

(37) *K Filter* (NOM):
An argument chain headed by a K-less nominal (DP or NP) contains a position that is c-commanded and governed by K or C, and does not contain any Case-bound position.

(38) *Oblique Case Realizations* (DAT, INS, ABL; for Inuit):
If α Case-binds an overt empty-headed KP β and does not meet the conditions of (39-ab), then the empty K of β is realized as
a. DAT, if α is V and is not c-commanded by β.
b. INS, if α is V and is c-commanded by β.
c. ABL, if α is N and is not c-commanded by β.

(39) *Direct Case Realizations* (ERG, ACC):
If α Case-binds an overt empty-headed KP β, then the empty K of β is realized as
a. ERG, if α is I;
b. ACC, if α is V and has an adjoined D.

47. Definitions 2

(40) *Case-Binding*.
Let α be a head that delimits a clause, and let β be an argument. Then α Case-binds β, and β’s head, iff
a. α locally c-commands β.
b. α governs a Case competitor for β.

(41) *Delimiting heads*;
A small clause is delimited by its lexical head, from below, and by any governing functional head, from above.

(42) *Local C-Command*:
Let α be a head that delimits a small clause, and let β be an argument. Then α locally c-commands β, iff:
a. α c-commands β, and
b. no other argument, or head that delimits a small clause, both c-commands β and is c-commanded by α.

(43) *Case Competitor*:
γ is a Case competitor for an argument β, iff γ is a K-less nominal that is (in a chain with) a coargument of β, or a pseudo coargument.
48. **Definitions 3**

(44) *Coargument:* Let β and γ be arguments. Then γ is a coargument of β, iff (a) and (b) hold:

- **Locality:** Some head that governs an A-projects γ also governs or A-projects β.
- **Independence:** γ excludes β and is not in a chain with β.

(45) *Government:* α governs β, iff:

- α m-commands β.
- There is no barrier between α and β.

(46) *M-Command:* α m-commands β, iff α does not include β, and every maximal projection that includes α also includes β.

(47) *C-Command:* α c-commands β, iff α excludes β, every projection that includes α also includes β, and at most one projection segment dominates α but not β.

(48) *Barrier:* A barrier between α and β is an XP, γ, with the X0 head, γ^0, such that

- γ excludes α, includes β, and is not an extended projection of β;
- γ^0 c-commands β, and neither α nor any adjunct of α binds γ^0.

49. **Ergative/Absolutive Patterns in Transitive Contexts 1**

(49) $|_{CP} C |_{IP} I |_{VP} Arg_{ext} |_{VP} V Arg_{int} ||||$

What we want to derive:

1. Arg_{ext} is a KP Case-bound by I (then it is assigned ergative).
2. Arg_{int} is a DP that obeys the K Filter (then it has no case: nominative/absolutive).

50. **Ergative/Absolutive Patterns in Transitive Contexts 2**

Case-Binding of KP_{ext} by I and K Filter for DP_{int}:

1. If I is to Case-bind Arg_{ext} as a KP, then I must be a head that delimits a clause. It is such a head (it delimits the VP small clause from above because it is a governing functional head).
2. If I is to Case-bind Arg_{ext} as a KP, then I must locally c-command Arg_{ext}. It does: There is no other argument (or small-clause-delimiting head) that
intervenes between I and Argext. (In particular, Argint does not intervene: it
is lower in the structure.)

51. Ergative/Absolutive Patterns in Transitive Contexts 3

3. If I is to Case-bind Argext as a KP, then I must govern a Case competitor for
Artext. I does not govern such a Case competitor for Argext in the structure
in (49). The reason is that Argint is protected by government by I through a
barrier, viz., VP. However, there are two ways to make I govern Argint after
all: First, Argint can move to SpecI (movement may cross a barrier as defined
here). Second, Argint may be governed by I because head movement of V to
I opens up the barrier and makes government of I into the VP possible (V is
then an adjunct of I that binds its trace (γ0). Thus, for I to govern Argint as
a Case competitor for Argext, either V or Argint has to move out of the VP.
Furthermore, if I is to Case-bind Argext, Argint must be a K-less nominal: a
DP. Finally, Argint must be a Case competitor for Argext. It is because they
are co-arguments. (They are co-arguments because they are A-projected by
the same head – V –, and because they are not in a dominance or chain
relation.)

4. As a result, we derive that I Case-binds KPext if the internal argument is a
K-less nominal DPint that either moves out of VP or shows up in a VP out
of which the verb has moved to I.

52. Ergative/Absolutive Patterns in Transitive Contexts 4

5. If Argint is a DP, it obeys the K Filter. This means that it must be governed
by C, and is not Case-bound itself. It cannot be Case-bound since it is not
locally c-commanded by a clause-delimiting head; and we can assume that C
governs Argint (IP is transparent, e.g., because of I-to-C movement).

6. This then means that given a structure like (49), the external argument is
a KP that is assigned ergative, and the internal argument is a DP that has
default case (nominative/absolute).

(50) Two ways to get an ergative encoding pattern:
a. Movement of NPint to SpecI:
 [CP [IP DP2 [V [VP KP1 [VP V t2]] I]] C]
b. Movement of V to I:
 [CP [IP = [V [VP KP1 [VP tV DP2]] V-I]] C]

Conclusion:
Ergative case shows up on an external argument, but only in the presence of a lower
coordination.
53. **Syntactic vs. Morphological Ergativity**

The two options in (50) cover syntactic vs. morphological ergativity:

- **Syntactic Ergativity:**
 If DP_{int} moves to SpecI, it becomes the highest argument. Syntactic operations referring to the notion of *highest argument* (‘subject’) will now treat $\text{Arg}_{\text{int}}-V_{t}$ in the same way as $\text{Arg}_{\text{ext}}-V_{t}$ and $\text{Arg}_{\text{int}}-V_{i}$ (and will treat $\text{Arg}_{\text{ext}}-V_{t}$ differently).

- **Morphological Ergativity:**
 If DP_{int} stays in situ, within VP (and V moves to I), it maintains ‘object properties’. Syntactic operations referring to the notion of *highest argument* (‘subject’) will now treat $\text{Arg}_{\text{ext}}-V_{t}$ in the same way as $\text{Arg}_{\text{ext}}-V_{i}$ and $\text{Arg}_{\text{int}}-V_{i}$ (and will treat $\text{Arg}_{\text{int}}-V_{t}$ differently).

Assumption:

Dyirbal, Inuit: syntactic ergativity (but recall Bobaljik (1993) on reflexives in Inuit; see (13))

Samoan, Warlpiri: morphological ergativity

54. **Active Patterns**

There is no obvious way to account for an ergative case on an external argument of a transitive verb, as in Basque, Hindi, Guarani, and Georgian. Strategy (well-known by now): **Unergative verbs are hidden transitive verbs.** In Basque, the evidence for this may not be poor: “Unergatives regularly take the form of light verb constructions,” as in *hitz egiten* (word do, ‘speak’). However, things are not so clear in Georgian, where the verbs that are involved do not look like light verb constructions (‘Funktionsverbgefüge’); also see Nash (1996).

(51) *Active patterns in Georgian* (past-tense, perfective aspect only):

- a. Vano-ισ γαμοζιρδα ζίμα
 Vano-\text{ERG}_{1} 3.\text{SG}_{2}.\text{raised}.3.\text{SG}_{1} \text{brother-NOM}_{2}
 ‘Vano raised his brother.’ (transitive)

- b. Bavšv-ma itira
 child-\text{ERG}_{1} \text{cried}.3.\text{SG}_{1}
 ‘The child cried.’ (unergative intransitive)

- c. Rezo γαμοζιρδα
 Rezo-NOM_{2} \text{grew}.3.\text{SG}_{2}
 ‘Rezo grew up.’ (unaccusative intransitive)

55. **Why Ergative Patterns are Simpler**

We have seen that I Case-binds Arg_{ext} in (52). Can Arg_{int} also be Case-bound?
56. Towards Accusative Encoding Patterns

(52) \[\text{CP C [p I [VP Arg_{ext} [VP V Arg_{int}]]]} \]

Two candidates: I and V.

1. I cannot Case-bind Arg_{int} in (52) because I does not locally c-command Arg_{int} (Arg_{ext} intervenes).

2. V cannot Case-bind Arg_{int}, either because V does not govern a Case competitor for Arg_{int} (Arg_{ext} is not governed by V because V does not c-command it: VP includes V but not Arg_{ext} in the VP-Adj position.

The latter consequence follows in an even simpler way (without invoking the inclusion/exclusion distinction) if external arguments are base-generated in the specifier of vP (rather than in a VP-adjointed position).

Consequence: Accusative patterns are more marked than ergative patterns; something extra needs to be said about the former!

56. Towards Accusative Encoding Patterns

Recall the notion of Case competitor in (53), pseudo coargument still needs to be defined:

(53) Case Competitor:
\[\gamma \] is a Case competitor for an argument \(\beta \), iff \(\gamma \) is a K-less nominal that is (in a chain with) a coargument of \(\beta \), or a pseudo coargument.

(54) Pseudo Coargument:
Let \(\beta \) be an argument; \(\delta \), a head that delimits a small clause; and \(\gamma \); a head adjoined to \(\delta \). Then \(\gamma \) is a pseudo coargument of \(\beta \), iff (a) and (b) hold:

a. Locality: \(\delta \) governs \(\beta \), and \(\gamma \) c-commands \(\beta \).

b. Independence: \(\gamma \) is not in a chain with the X^0 head of \(\beta \), and \(\beta \) is not in a chain with the subject of the small clause delimited by \(\delta \).

Consequences:

- Locality: \(\gamma \) can never be a pseudo coargument of Arg_{ext}.

- Independence: Pseudo coarguments only come into being if there is more than one argument in the clause.

57. Antipassive

(55) Antipassive Alternation in Chukchee (Paleosibirian; Comrie (1979)):

 a. Yemron-na qariq-arkan-in ekaak
 Yemron-ERG1 search-PRES-3.SG1.3.SG2 son-NOM2
 ‘Yemron is searching for his son.’
Chapter 3. The Minimalist Program

b. Yemron ine-lqarir-arkən (akka-gta)
 Yemron-NOM1 PASS-search-PRS.3SG1 (son-DAT)
 ‘Yemron is searching (for his son).’

Analysis:

1. The APASS morpheme is an N head adjoined to V; it is a pseudo coargument
 for Arg_{int}, which accordingly is a Case-bound KP.

2. KP_{int} is Case-bound by V and gets DAT rather than ACC case for the simple
 reason that the pseudo coargument is an N rather than a D (see (38), (39)).

3. Arg_{ext} cannot be Case-bound anymore in this configuration because there
 is no coargument (or close pseudo coargument) that might act as a Case
 competitor (i.e., be K-less – the Case-bound Arg_{int} certainly is not).

4. Arg_{ext} therefore must be DP and gets default case from C.

58. Accusative Encoding Patterns

Assumptions:

1. Accusative patterns can be traced back to a V-adjoined pseudo-argument, as
 in antipassives. The only difference: The adjoined item is D rather than N;
 hence, the Case realized for a KP Case-bound by V-D is ACC rather than,
 say, DAT.

2. DP_{ext} must be governed by C, which can take place either via raising to
 SpecI, or via head movement of I to C (just as in ergative encoding systems).
 Result: English-type vs. Japanese/German-type accusative languages.

(56) Two accusative patterns:
 a. Movement of DP_{ext} to SpecI:
 \[[\text{CP} C [\text{IP} \text{DP}_1 [\text{VP t}_1 [\text{VP V KP}_2]] I]] \]
 b. Movement of I to C:
 \[[\text{CP} C-I [\text{IP} - [\text{VP} \text{DP}_1 [\text{VP V KP}_2]] t_1]] \]

59. Three-Way Systems 1

Like optimality-theoretic analyses, but in contrast to the other two minimalist
types of approach, the present analysis can in principle capture a co-occurrence
of ERG and ACC. Languages like Antekerrepenhe (Arandic; Central Australia) and
Nez Perce (Penutian; Oregon) seem to instantiate this rare pattern.

(57) Antekerrepenhe:
a. Arengke-łe aye-nhe ke-ke
 dog-ERG me-ACC bite-PST
 ‘The dog bit me.’

b. Apwerte-łe athe arengke-nhe we-ke
 stones-INS I-ERG dog-ACC pelt-PST
 ‘I pelted the dog with stones.’

c. Arengke ntere-ke
 dog-NOM run-PST
 ‘The dog ran.’

60. Three-Way Systems 2

Analysis:

1. There must be an additional pseudo coargument for Arg_{ext} somewhere in the structure, so that the latter can be Case-bound by I even though Arg_{int} is Case-bound by V.

2. There is an additional NP shell on top of the Arg_{int} KP. The N head of the NP shell undergoes incorporation to D in V. Now Arg_{ext} and Arg_{int} both have Case competitors, and two structural cases can be realized.

(58) \[VP \text{ Structure in Three-Way Systems} \]
\[|_{VP} KP_{ext} |_{VP} |_{NP} V' |_{NP} N' |_{KP_{int}} K |_{DP} D |_{NP} N || t_N || v || D N D V ||]

Claim:
This is indicative of a more general feature of Bittner & Hale’s analysis: The system is quite flexible (more so than the analyses developed by Bobaljik and Murasugi, e.g.), but this is mainly due to the fact that highly articulate structures, and subtle structural differences (e.g., N vs. D) between languages, are postulated.
Chapter 4

A New Approach

1. Goal

Goal:
A new minimalist analysis of accusative vs. ergative patterns of argument encoding (via case marking or agreement) that meets the criteria postulated before (e.g. no construction-specific rules, no movement, erg=acc, nom=abs, etc.), and that is grounded in Murasugi’s (1992) approach. The proposal is based on the observation that indeterminacies may arise in the application of Merge and Agree (see Chomsky (2000, 2001)), given that they both obey an Earliness requirement (see Pesetsky (1989), Pesetsky & Torrego (2001)).

Basic claim:
A principled resolution of one such indeterminacy (on the vP cycle) in one or the other direction yields an accusative or ergative encoding pattern for arguments.

2. Background Assumptions 1

Syntactic structure is created incrementally, bottom-up, by the elementary operations Merge and Agree, and by Move (which is a special case of Merge: internal vs. external Merge; Chomsky (2005), and which will not play a major role in what follows).

(1) Two types of features that drive operations:
 a. Structure-building features (edge features, subcategorization features) trigger Merge: [*F*]
 (Svenonius (1994), Collins (2003), Sternefeld (2003), Heck (2004))
 b. Probe features trigger Agree: [*F*]
 (Sternefeld (2003))

(2) Merge Condition:
 Structure-building features ([*F*]) participate in Merge.
(3) *Agree Condition:*
Probes \([\ast F\ast]\) participate in Agree.

3. **Background Assumptions 2**

(4) *The operation Merge:*
\(\alpha\) can be merged with \(\beta\), yielding \(\{\alpha, \{\alpha, \beta\}\}\), if \(\alpha\) bears a structure-building feature \([\ast F\ast]\) and \(F\) is the label of \(\beta\).

(5) *The operation Agree:*
\(\alpha\) agrees with \(\beta\) with respect to a feature bundle \(\Gamma\) iff (a), (b), and (c) hold:
\(\alpha\) bears a probe feature \([\ast F\ast]\) in \(\Gamma\), \(\beta\) bears a matching goal feature \([F]\) in \(\Gamma\).
\(\beta\) m-commands \(\alpha\).
There is no \(\delta\) such that (i) and (ii) hold:
\(\delta\) is closer to \(\alpha\) than \(\beta\).
\(\delta\) bears a feature \([F]\) that has not yet participated in Agree.

4. **Background Assumptions 3**

Note:
1. (5-b) permits an Agree relation between a head and its specifier, as seems natural (but see, e.g., Chomsky (2004)).
2. (5-c) presupposes a notion of closeness.

(6) *Closeness:*
\(\delta\) is closer to \(\alpha\) than \(\beta\) if the path from \(\delta\) to \(\alpha\) is shorter than the path from \(\beta\) to \(\alpha\).

The path from \(X\) to \(Y\) is the set of categories \(Z\) such that (a) and (b) hold:
\(\delta\) is reflexively dominated by the minimal XP that dominates both \(X\) and \(Y\).
\(Z\) dominates \(X\) or \(Y\).
The length of a path is determined by its cardinality.

Consequences:
(i) The specifier and the complement of a head qualify as equally close to the head.
(ii) The specifier of a head is closer to the head than a category that is further embedded in the complement of the head.

5. **Background Assumptions 4**

Further general assumptions (Chomsky (2000, 2001)):
6. Background Assumptions 5

1. **Clause structure.**
 Basic clause structure has CP, TP, vP, and VP.

2. **Numerations.**
 Lexical items that are to participate in derivations are selected from the
 lexicon pre-syntactically, and assembled in a numeration N (or lexical array).

3. **Workspace (Frampton & Gutman (1999), Hornstein (2001)).**
 The workspace of the derivation comprises items in the numeration and
 phrases that have been created independently.

4. **Merge of argument DPs:**
 DP\textsubscript{int} is merged in VP, DP\textsubscript{ext} is merged in vP, as a specifier.

5. **Argument encoding and functional heads:**
 T and v are involved in the structural encoding of primary arguments (i.e.,
 DP\textsubscript{ext} and DP\textsubscript{int} arguments for which no inherent/lexical CASE is specified),
 by bearing features that act as probes and thus trigger Agree operations.

6. **Background Assumptions 5**

 More specific assumptions about argument encoding:

 1. There is one structural argument encoding feature: CASE.
 2. CASE can have two values: ext(ernal) and int(ernal) (determined with respect
 to vP, the predicate domain).
 4. [CASE] features figure in Agree relations involving T/v and DP, as in (8).

 (8) **The role of T and v in argument encoding:**
 a. T bears a probe [*CASE:ext*] that instantiates a matching [CASE:ext] goal
 on DP.
 b. v bears a probe [*CASE:int*] that instantiates a matching [CASE:int] goal
 on DP.

7. **Case and Agreement**

 Observation:
 Case-marking and agreement-marking both depend on an Agree relation between
 T/v and DP, and thus qualify as two sides of the same coin.

 (9) **Argument encoding by case or agreement:**
a. Argument encoding proceeds by case-marking if $\text{[CASE:}\alpha\text{]}$ is morphologically realized on DP.

b. Argument encoding proceeds by agreement-marking if $\text{[}^*\text{CASE:}\alpha^*\text{]}$ is morphologically realized on T/v.

(Some extra will have to be said about cases where agreement is not case-based, but, e.g., argument type-based (external vs. internal argument).)

8. Merge vs. Agree 1

A conspicuous property:
v (unlike T or V) plays a dual role: It triggers Merge of NP_{ext} (by a $\text{[}\bullet\text{D}\bullet\text{]}$ feature), and it also triggers an Agree operation (by its $\text{[}^*\text{CASE:}\text{int}^*\text{]}$ feature). This dual role has far-reaching consequences for the nature of argument encoding.

An indeterminacy:
Consider a simple transitive context, with two arguments DP_{int}, DP_{ext}. Suppose that the derivation has reached a stage Σ where v has been merged with a VP containing DP_{int}, with DP_{ext} waiting to be merged with v in the workspace of the derivation. At this point, an indeterminacy in rule application arises: The next operation could be either $\text{Agree}(v,\text{DP}_{\text{int}})$ (see (i)) or $\text{Merge}(\text{DP}_{\text{ext}}, v)$ (see (ii)). The Agree Condition demands the former operation, and the Merge Condition demands the latter.

9. Merge vs. Agree 2: The Dilemma

(10) $\text{Stage } \Sigma$:

\[
\begin{align*}
\text{DP}_{[c, \Box]} & \quad \rightarrow \quad v' \\
\text{V} & \quad \rightarrow \quad \text{VP} \\
\text{VP} & \quad \rightarrow \quad \text{DP}_{[c, \Box]}
\end{align*}
\]

10. An Optimality-Theoretic Solution

Solution:
Conflicts of this type are real and must be resolved by giving one constraint (the Merge Condition or the Agree Condition) priority over the other in the case of conflict, i.e., by ranking the requirements.

Note:
This is an instance of optimization in syntax, with minimal violability of the lower-ranked requirement; see Prince & Smolensky (2004). However, the optimization involved here is extremely local (competing candidates are derivational steps), which avoids the complexity

(11) **Rankings:**
 a. Accusative patterns: *Agree Condition ≫ Merge Condition*
 b. Ergative patterns: *Merge Condition ≫ Agree Condition*

11. The Order of Elementary Operations 1

(12) **Agree before Merge: accusative**

\[
\begin{align*}
\text{TP} & \quad \longrightarrow \quad T' \\
\quad & \quad \longrightarrow \quad T_{[s\in ext]} \\
\quad & \quad \longrightarrow \quad vP \\
\quad & \quad \longrightarrow \quad \text{DP}_{ext} \\
\quad & \quad \longrightarrow \quad v' \\
\quad & \quad \longrightarrow \quad v_{[s\in int],[\bullet D]} \\
\quad & \quad \longrightarrow \quad \text{VP} \\
\quad & \quad \longrightarrow \quad V \\
\quad & \quad \longrightarrow \quad \text{DP}_{int} \\
\end{align*}
\]

12. The Order of Elementary Operations 2

(13) **Merge before Agree: ergative**

\[
\begin{align*}
\text{TP} & \quad \longrightarrow \quad T' \\
\quad & \quad \longrightarrow \quad T_{[s\in ext]} \\
\quad & \quad \longrightarrow \quad vP \\
\quad & \quad \longrightarrow \quad \text{DP}_{ext} \\
\quad & \quad \longrightarrow \quad v' \\
\quad & \quad \longrightarrow \quad v_{[s\in int],[\bullet D]} \\
\quad & \quad \longrightarrow \quad \text{VP} \\
\quad & \quad \longrightarrow \quad V \\
\quad & \quad \longrightarrow \quad \text{DP}_{int} \\
\end{align*}
\]

13. The Order of Elementary Operations 3

Remarks on the accusative pattern:

1. **Mechanics:**
 Given Earliness(*Agree*) ≫ Earliness(*Merge*), *Agree*(v,DP\textsubscript{int}) applies first (step (i)) at stage Σ. Since v is marked [*CASE:int*], this ensures a *CASE:int* specification on DP\textsubscript{int}. DP\textsubscript{ext} is merged in SpecV in the next step (step (ii)). The derivation continues, merging T and vP, and then carrying out *Agree*(T,DP\textsubscript{ext}), which instantiates [CASE:ext] on DP\textsubscript{ext} (step (iii)).
2. *Accusative, nominative:*
 The morphological realization of an internal encoding feature \([\ast]_{\text{CASE:int}}(\ast)\) with \(\text{Agree}(v,\text{DP}_{\text{int}})\) (by case or agreement) can be called accusative; the morphological realization of an external encoding feature \([\ast]_{\text{CASE:ext}}(\ast)\) with \(\text{Agree}(T,\text{DP}_{\text{ext}})\) can be called nominative.

3. *Language types derived:*
 This accounts for argument encoding in transitive contexts in accusative languages like Icelandic and Navajo: The internal argument is marked by the internal case, the external argument is marked by the external case.

14. *The Order of Elementary Operations 4*

Remarks on the ergative pattern:

1. *Mechanics:*
 Given Earliness(Merge) \(\gg\) Earliness(Agree), \(\text{Merge}(\text{DP}_{\text{ext}},v)\) must apply first (step (i)) at stage \(\Sigma\). \(\text{DP}_{\text{ext}}\) is now closer to \(v\) than \(\text{DP}_{\text{int}}\), and given that Agree relations are subject to a minimality requirement and require only m-command by the probe, the next operation will have to be \(\text{Agree}(v,\text{DP}_{\text{ext}})\), in a specifier/head configuration (step (ii)). This instantiates \([\text{CASE:int}]\) on \(\text{DP}_{\text{ext}}\). Subsequently, \(T\) is merged, and \(\text{Agree}(T,\text{DP}_{\text{int}})\) is carried out (step (iii)), with \([\text{CASE:ext}]\) for \(\text{DP}_{\text{int}}\).

2. *Ergative, absolutive:*
 The morphological realization of an internal encoding feature \([\ast]_{\text{CASE:int}}(\ast)\) with \(\text{Agree}(v,\text{DP}_{\text{ext}})\) can be called ergative; the morphological realization of an external encoding feature \([\ast]_{\text{CASE:ext}}(\ast)\) with \(\text{Agree}(T,\text{DP}_{\text{int}})\) can be called absolutive.

3. *Language types derived:*
 This accounts for argument encoding in transitive contexts in ergative languages like Arichi and Sierra Popoluca: The internal argument is marked by the external case, the external argument is marked by the internal case.

15. *Case Feature Specifications in Numerations*

Nothing has been said about intransitive contexts so far.

Problem:
Unchecked probes lead to a crash of the derivation; hence, \([\ast]_{\text{CASE:}a}^{\ast}\) must be absent on either \(T\) or \(v\) in the derivation if only one DP is present that has a feature \([\text{CASE:}\Box]^{\ast}\). But on which one?

Claim:
(14) **Feature Balance** (holds of numerations):
For every feature $[^*F;\alpha^*]$, there must be a matching feature $[^*F;\square^*]$.

The underlying idea is that a derivation that fails to provide a matching goal feature specification for each probe feature specification that it employs is doomed from the start, and should be excluded as soon as possible, i.e., in the numeration.

16. **How to Respect Feature Balance**

Consequence:
$[^*\textsc{case;ext}^*]$ on T or $[^*\textsc{case;int}^*]$ on v must be absent if there is only one D with a CASE feature in the numeration.

Assumption:
There are two possible ways to respect Feature Balance in numerations underlying intransitive contexts:

1. Preservation of the *unmarked* $[^*\textsc{case}^*]$ feature.

2. Preservation of the *iconic* $[^*\textsc{case}^*]$ feature (that matches the argument type in markedness).

17. **Canonical Ergative Argument Encoding 1**

Solution 1: Preservation of the unmarked $[^\textsc{case}^*]$ feature*

(15) **Unmarked vs. marked CASE features:**

a. $[^*\textsc{case;ext}(*^)]$ (nominative/absolutive) \rightarrow unmarked
 (typically default CASE in syntax, and segmentally less complex in morphology
 (often default or zero))

b. $[^*\textsc{case;int}(*^)]$ (accusative/ergative) \rightarrow marked
 (typically not default CASE in syntax, and segmentally more complex in morphology)

Consequence:
In intransitive contexts, $[^*\textsc{case;ext}^*]$ on T has to be preserved, and $[^*\textsc{case;int}^*]$ cannot be instantiated on v. Therefore, the sole argument of an intransitive predicate (DP_{ext} or D_{int}) is encoded by $[^*\textsc{case;ext}(*^)]$ (nominative/absolutive), after $\text{Agree}(T,\text{DP}_{\text{ext}})$ or $\text{Agree}(T,\text{DP}_{\text{int}})$, which captures the situation in the language types discussed so far.
18. Canonical Ergative Argument Encoding 2

16. a. Nominative/absolutive with $DP_{ext} \cdot V_i$
 b. Nominative/absolutive with $DP_{int} \cdot V_i$

\[
\begin{array}{c}
\text{TP} \\
\text{T'} \\
\text{T}_{[s\text{eexts}]} \quad \text{vP} \\
\text{v'} \\
\text{(ii)} \\
\text{DP}_{ext} \quad \text{v} \\
\text{(i)} \\
\text{VP} \\
\text{V}
\end{array}
\]

\[
\begin{array}{c}
\text{TP} \\
\text{T'} \\
\text{T}_{[s\text{eexts}]} \quad \text{vP} \\
\text{v} \\
\text{(ii)} \\
\text{V} \\
\text{VP} \\
\text{DP}_{int}
\end{array}
\]

19. Active Argument Encoding 1

Solution 2: Preservation of the iconic (type-matching) $[^{\text{*case*}}]$ feature

17. Unmarked vs. marked argument types:
 a. $DP_{int} \rightarrow$ unmarked
 (merged within its predicate’s projection, not requiring a special ‘externalization’ operation (Williams (1981)) in argument structure)
 b. $DP_{ext} \rightarrow$ marked
 (not merged within its predicate’s projection, requiring a special ‘externalization’ operation)

Consequence:
(i) A marked feature specification ($[^{\text{*case:int*}}]$ on v) must show up in the numeration in the presence of a V taking an marked argument (DP_{ext}).
(ii) An unmarked feature specification ($[^{\text{*case:ext*}}]$ on T) occurs in the presence of a V taking an unmarked argument (DP_{int}).

20. Active Argument Encoding 2

18. a. Ergative with $DP_{ext} \cdot V_i$
 b. Absolutive with $DP_{int} \cdot V_i$

\[
\begin{array}{c}
\text{TP} \\
\text{T'} \\
\text{T} \\
\text{vP} \\
\text{DP}_{ext} \quad \text{v'} \\
\text{(i)} \\
\text{v}_{[s\text{eint}]} \quad \text{VP} \\
\text{(ii)} \\
\text{V}
\end{array}
\]

\[
\begin{array}{c}
\text{TP} \\
\text{T'} \\
\text{T}_{[s\text{eexts}]} \\
\text{vP} \\
\text{v} \\
\text{(ii)} \\
\text{V} \\
\text{VP} \\
\text{DP}_{int}
\end{array}
\]
21. Active Argument Encoding 3

Observation:
This makes it possible to account for active ergative argument encoding patterns in languages like Basque, Georgian, Hindi (with case) and Guaraní (with agreement) without invoking the assumption that unergatives are hidden transitives in these languages (but not in others).

(19) Active ergative case-marking in Basque:
 a. Jon-()} etorri da
 Jon-ABS come:PTCP.PRF is:3.SG.INTR
 ‘Jon came.’
 b. Jon-ek saltatu du
 Jon-ERG jump:PTCP.PRF have:3.SG.TR
 ‘Jon jumped.’
 c. Jon-ek ardo-a-()} ekarri du
 Jon-ERG wine-DET-ABS bring:PTCP.PRF have:3.SG.TR
 ‘Jon brought the wine.’

22. Active Argument Encoding 4

(20) Active ergative agreement-marking in Guaraní (Tupí-Guarani):
 a. Še-mamu’a
 1.SG.ABS-remember
 ‘I remember.’
 b. A-ma.apo
 1.SG.ERG-work
 ‘I work.’
 c. 0-Ai-pute
 3.SG.ABS-1.SG.ERG-hit
 ‘I hit him.’

23. Anti-Active Patterns

Note:
The present analysis does not per se exclude an ‘anti-active’ pattern, as in (21). Anti-active marking would arise in an accusative system that preserves the CASE feature specification matching the argument type in markedness in intransitive contexts (rather than the CASE feature specification that is unmarked); it differs from the accusative pattern in (1-a) in encoding DP

\[
\begin{array}{c|c|c}
\text{Anti-active marking} & \text{DP}_{\text{ext}}-V_i & \text{DP}_{\text{int}}-V_i \\
\text{nom} & \text{DP}_{\text{ext}}-V_i & \text{DP}_{\text{int}}-V_i \\
\text{acc} & \text{DP}_{\text{ext}}-V_i & \text{DP}_{\text{int}}-V_i \\
\end{array}
\]

\text{(Gregores & Suárez (1967))}.
Possible Solution: Such a system is dysfunctional (Bechert (1979), and Lecture 1).

24. **An Alternative**

There is an alternative solution to the Agree/Merge indeterminacy problem on the vP level; one that does not involve constraint violability and constraint ranking (Lennart Bierkandt, p.c.).

Assumption:

- Subcategorization features that trigger Merge ([F•]) and probe features that trigger Agree ([F*]) are ordered on v.
- Only the highest feature on the feature hierarchy is visible for the Agree Condition and the Merge Condition at any given stage of the derivation.
- A probe or subcategorization features disappears (or becomes inert) after having triggered an operation (Merge or Agree).

(22) *Ergative/accusative parameter:*

a. [F*] > [D•] on v: accusative encoding pattern
b. [D•] > [F*] on v: ergative encoding pattern

25. **Independent Evidence**

A simple theory of linking (argument structure → argument realization):

(23) John$_1$ gave a book$_2$ to Mary$_3$

(24) **Hierarchy of subcategorization features on V** (follows directly from the Bierwisch/Heim/Kratzer/Wunderlich system in terms of A prefixation laid out in lecture 1):

AGENT > THEME > GOAL

[D•] > [D•] > [P•]

26. **Syntactic Ergativity 1**

So far, a notion like “subject” has been irrelevant. However, there are operations that may have to refer to such a concept, like reflexivization, raising, control, relativization or topic-chaining (pivot-chaining; Dixon (1994)).

Accusative pattern:

In accusative systems, it is often the nominative DP that has subject properties. Typically, the nominative DP is also the highest (or single) argument DP. If the highest argument is a non-nominative DP, as with oblique dative-nominative orders in Icelandic, the oblique DP can have subject properites (see lecture 1).
Ergative pattern:
In ergative systems, there are two possibilities: Either the highest argument DP, or the argument DP that is marked with absolutive case, can exhibit subject properties: morphological ergativity (except for case marking, the syntax treats DP$_{ext/int}$-V$_i$ and DP$_{ext}$-V$_t$ on a par) vs. syntactic ergativity (as with case marking, the syntax treats DP$_{ext/int}$-V$_i$ and DP$_{int}$-V$_t$ on a par). In Mother saw father and _ returned, where _ is he, not she). The former option is chosen in Arche, Basque, Warlpiri; the latter in Dyirbal (at least as a tendency). Optionality is possible as well (Chukchi). Finally, in a single language, some operations may select the highest argument as the subject, and other operations may select the absolutive argument (Inuit). See Comrie (1989), Bobaljik (1993), Dixon (1994), Bittner & Hale (1996a,b).

27. Syntactic Ergativity 2

Two possible analyses:
(i) In syntactically ergative systems, NP$_{int}$ moves to SpecT (which which it Agrees) and becomes the highest argument (cf. Bittner & Hale (1996b)).
(ii) Subject-oriented operations affect prominent arguments. There are two ways for an argument DP to become prominent:

(25) Prominence:
An argument DP counts as prominent if it
a. occupies the highest argument position in the clause;
 b. undergoes Agree with the highest functional head.

Consequence:
The two notions of prominence typically converge on a single argument in accusative systems; the situation is different in ergative systems.

28. Further Issues: Split Ergativity, Three-Way Systems

Cases of split ergativity
- tense-/aspect-based split ergativity, as in Burushaski, Hindi (see Mahajan (1990))
- clause-type based split ergativity, as in Sierra Popoluca (see Elson (1960b)).
- person-based split ergativity, as in Dyirbal (see Dixon (1994))

Co-occurrences of ergative and accusative
(see Dixon (1994), Woolford (1997), Kiparsky (1999), and lectures 1 and 3)

29. Person-Based Splits

Person-based split ergativity in Dyirbal:
In Dyirbal, DP$_{ext}$ of V$_i$ is marked ergative if it is a 3rd person pronoun or an item to the right of it on the person/animacy scale in (26). DP$_{int}$ of V$_i$ is marked accusative if it is a
1st or 2nd person pronoun. All other types of argument DP are not encoded by an overt marker (see Dixon (1994)).

(26) Person/animacy scale (Silverstein (1976), Aissen (1999)):
1st person pronoun > 2nd person pronoun > 3rd person pronoun > proper name
> common noun, human > common noun, animate > common noun, inanimate

Strategies for analysis: A person-based split may in principle be either a syntactic or a morphological phenomenon. Such splits often seem to be functionally motivated in the sense that only unexpected, atypical configurations are marked.
(a) Morphology: There is a zero allomorph that results from impoverishment (an operation from Distributed Morphology that deletes morphosyntactic features post-syntactically). (Impoverishment rules might ultimately be motivated by functional considerations).
(b) Syntax: Instantiation of argument encoding features in the numeration is restricted by the argument type (its place on the person/animacy scale).

30. Tense/Aspect-Based Splits

Recall that there are two versions of the present analysis:

- constraint ranking (Merge Condition ⇒ Agree Condition, or vice versa)
- feature hierarchy ([\bullet \bullet] > [\textit{CASE:INT}], or vice versa)

Here the feature hierarchy version might prove superior.

Sketch of an analysis:

1. The Hindi lexicon has two v's:
 - v₁ with the feature hierarchy [\bullet \bullet] > [\textit{CASE:INT}]
 - v₂ with the feature hierarchy [\textit{CASE:INT}] > [\bullet \bullet].

2. T[\textit{PERF}] selects v₁, T[\textit{PERF}] selects v₂.

3. Morphological realization need not be identical.

Note:
A similar analysis can be developed for clause-type based splits, as in Sierra Popoluca.

31. Three-Way Systems

(27) Antkerkerpenhe:
 a. Arengke-le aye-nhe ke-ke
dog-ERG me-ACC bite-FST
 'The dog bit me.'
 b. Apwerte-le athe arengke-nhe we-ke
stones-INS I-ERG dog-ACC pelt-FST
 'I pelted the dog with stones.'
 c. Arengke nterre-ke
dog-NOM run-FST
 'The dog ran.'
Analyses:

- morphological realization; or
- v has two case features (or there are two v’s)
Bibliography

Bibliography

Leipzig.
Bibliography

Sigrúnsson, Halldór (2002a): To be an Oblique Subject: Russian vs. Icelandic, Natural Language and Linguistic Theory pp. 691–724.
Sigrúnsson, Halldór (2002b): To be an Oblique Subject: Russian vs. Icelandic, Natural Language and Linguistic Theory pp. 691–724.