Displacement: Introduction

Gereon Müller

Universität Leipzig
SoSe 2008
Non-Local Dependencies

Syntactic dependencies may be non-local in the sense that they involve two positions in a phrase structure whose correspondence cannot be captured by invoking notions like clause-mate relation or (non-extended) predicate/argument structure.

Core cases:

1. long-distance movement dependencies like wh-movement, topicalization, etc. (the displaced item and its base position can in principle be separated by arbitrarily many intervening clause boundaries)
2. reflexivization (often confined to minimal predicate/argument structures, but may also apply non-locally, without necessarily being amenable to an account in terms of logophoricity)
3. long-distance agreement (Tsez, Itelmen, Hindi, perhaps also Icelandic)
4. control of the subject of an infinitive by an argument belonging to a matrix clause
5. non-local case assignment (not necessarily confined to minimal predicate/argument structures)
6. tense relations (consecution temporum): non-local almost by definition
7. extended neg scope, extended mood selection (e.g., demand + subjunctive)
8. binding of pronouns (that are interpreted as variables)
The Displacement Property of Natural Language

1. Observation: Syntactic items do not necessarily show up in the canonical positions in which they are placed by the rules of the base component (e.g., phrase structure rules); they often are displaced, (or dislocated), to the left or right periphery.

2. Displacement can be viewed as one of the defining properties of natural languages (in addition to recursion, double articulation, and compositionality).

3. Analysis: Movement. There is a connection between the base position and the new, displaced position. This connection may be brought about by genuine movement, or by some other means. (In the latter case, “movement” is just a metaphor.)
a. “We have two ‘imperfections’ to consider: uninterpretable features and the dislocation property. These properties ... are never built into special-purpose symbolic systems. We might suspect, then, that they have to do with externally-imposed legibility conditions. With regard to dislocation, that has been suggested from the earliest days of modern generative grammar, with speculations about facilitation of processing (on the sound side) and the dissociation of ‘deep’ and ‘surface’ interpretive principles (on the meaning side).

One approach to the array of problems was to distinguish the role of deep and surface structure in semantic interpretation: the former enters into determining quasi-logical properties such as entailment and theta structure; the latter properties such as topic-comment, presupposition, focus, specificity, new/old information, agentive force, and others that are often considered more discourse-oriented, and appear to involve the ‘edge’ of constructions.” (Chomsky (2000))

b. “Minimalist intuitions lead us to look at the other major imperfection, the uninterpretable inflectional features. Perhaps these devices are used to yield the dislocation property. If so, then the two imperfections might reduce to one, the dislocation property. But the latter might itself be required be design specifications.” (Chomsky (2000))

c. “Morphology is a very striking imperfection; at least, it is superficially an imperfection. If you were to design a system, you would not put it in. It’s not the only one, though; no formal language, for example, has a phonology or a pragmatics and things like dislocation in the sense we all understand: expressions appear not where you interpret them but somewhere else.” (Chomsky (2002))

d. “Displacement ... is ubiquitous in language and must be captured in some manner in any theory [...] Displacement is not an ‘imperfection’ of language; its absence would be an imperfection.” (Chomsky (2001a))

e. “The operation called “Move” ... comes free, yielding the familiar displacement property of language. That property had long been regarded, by me in particular, as an “imperfection” of language that has to be somehow explained, but in fact it is a virtual conceptual necessity; some version of transformational grammar seems to be the null hypothesis.” (Chomsky (2005b))
Some Instances of Movement

Bewegung erzeugt aus Nebensatzstrukturen im Deutschen Hauptsatzstrukturen (Bierwisch (1963)). Satzeinleitende Konjunktionen (= Komplementierer, C-Elemente) sind mit vorangestellten Verben in komplementärer Verteilung.

(2) Wh-movement in English:
What do you think that Mary bought □ ?

(3) Verb-second movement in German:

a. dass Karl das schöne Auto kauft.
b. Kauft Karl das schöne Auto?
c. weil Maria den Plan ablehnt.
d. Lehnt Maria den Plan ab?

(4) Topicalization in German:

a. Kauft Karl das schöne Auto?
b. Das schöne Auto kauft Karl.
c. Karl kauft das schöne Auto.
d. Lehnt Maria den Plan ab?
e. Den Plan lehnt Maria ab.
f. Maria lehnt den Plan ab.
Unbegrenztheit

Beobachtung:
Transformationen wie W-Bewegung müssen im Prinzip über eine beliebig weite syntaktische Strecke hinweg applizieren können (‘unbounded dependencies’).

(5) Unbegrenzte Bewegungen:
 a. Ich weiß nicht, wann du denkst, dass er eintreffen wird.
 b. Wen sagt Maria, dass wir einladen sollten?
 c. Wen denkst du, dass Maria glaubt, dass der Fritz gesagt hat, dass man einladen sollte?
 d. In Hannover glaube ich nicht, dass man so etwas sagt.
 e. Den Fritz meinte sie, solle man einladen.
Local Modelling

Movement:

1. **successive cyclicity** in the case of displacement phenomena (i.e., Comp-to-Comp movement): modelling of a non-local dependency as a (more) local phenomenon in classic transformational grammar

2. **Slash feature percolation** (Gazdar (1981); Gazdar et al. (1985)): an even more local treatment of movement dependencies developed by Gerald Gazdar in the framework of GPSG (essentially still maintained in HPSG analyses, as in Pollard & Sag (1994)).

3. Recent analyses within the minimalist program (including Chomsky (2004, 2005a,b, 2007)): like Slash feature percolation approaches in that displacement phenomena involve minimal local movement steps – not only to the edge of a phase (i.e., clause or predicate phrase), but actually to the edge of each XP

4. Similar: recent work on gap phrases (Koster (2000), Neeleman & van de Koot (2007)).
(6) What do you think that Mary bought?
(6) What do you think that Mary bought?

(7) **Unbounded movement** (e.g., Ross (1967)):

\[
\text{[CP } \text{What}_1 \text{ do you think } \text{[CP that Mary bought } t_1 \text{]] ?} \quad \text{(anachronistic notation)}
\]
(6) What do you think that Mary bought?

(8) **Successive-cyclic Comp-to-Comp movement** (e.g., Chomsky (1973, 1977, 1981)):
\[
[\text{CP} \text{What}_1 \text{ do you think } [\text{CP} \text{t}_1' \text{ that Mary bought } \text{t}_1]]
\]
(anachronistic notation)
(6) What do you think that Mary bought?

(9) Successive-cyclic movement to phase edges (e.g., Chomsky (2000, 2001b), Fox (2000), Nissenbaum (2000), Bruening (2001), Barbiers (2002), many others):

\[\text{CP What}_1 \text{ do you } [_{vP} t'_1 \text{ think } [_{CP} t''_1 \text{ that Mary } [_{vP} t'_1 [_{VP} \text{ bought } t_1]]]]] \]
(6) What do you think that Mary bought?

\[
[\text{CP } \text{What}_1 \text{ do } [\text{TP } t'_1 \text{ you } [\text{VP } t'_1 \text{ think } [\text{CP } t'' \text{ that } [\text{TP } t'' \text{ Mary } [\text{VP } t'_1 \text{ bought } t_1]][][]])]]
\]
(6) What do you think that Mary bought?

(11) **Slash feature percolation** (e.g., Gazdar (1981, 1982); Gazdar et al. (1985), Pollard & Sag (1994), Levine & Sag (2003b,a), Müller (2007); also Koster (2000), Neeleman & van de Koot (2007)):

\[
\begin{align*}
\text{CP} & \text{ What}_1 \left[\text{CP} : \text{do} \left[\text{TP} : \text{you} \left[\text{TP} : \text{think} \left[\text{CP} : \text{that} \left[\text{TP} : \text{Mary} \left[\text{TP} : \text{think} \left[\text{CP} : \text{bought} \left[\text{CP} : \text{t}_1 \right] \right] \right] \right] \right] \right] \right] \right] ? & \text{(archanomistic notation)}
\end{align*}
\]
(6) What do you think that Mary bought?

(7) **Unbounded movement** (e.g., Ross (1967)):

\[\text{[CP \ What}_1 \ \text{do you think [CP that Mary bought t}_1 \]} \]

(anachronistic notation)

(8) **Successive-cyclic Comp-to-Comp movement** (e.g., Chomsky (1973, 1977, 1981)):

\[\text{[CP \ What}_1 \ \text{do you think [CP t}'_1 \ \text{that Mary bought t}_1 \]} \]

(anachronistic notation)

(9) **Successive-cyclic movement to phase edges** (e.g., Chomsky (2000, 2001b), Fox (2000), Nissenbaum (2000), Bruening (2001), Barbiers (2002), **many others**):

\[\text{[CP \ What}_1 \ \text{do you [vP t}''_1 \ \text{think [CP t}''_1 \ \text{that Mary [vP t}_1 \ [vP \ \text{bought t}_1 \]}]])} \]

\[\text{[CP \ What}_1 \ \text{do [TP t}''''_1 \ \text{you [vP t}''''_1 \ [vP t}''''_1 \ \text{think [CP t}''''_1 \ \text{that [TP t}''_1 \ \text{Mary [vP t}_1 \ [vP \ \text{bought t}_1 \]}]])]} \]

(11) **Slash feature percolation** (e.g., Gazdar (1981, 1982); Gazdar et al. (1985), Pollard & Sag (1994), Levine & Sag (2003b,a), Müller (2007); also Koster (2000), Neeleman & van de Koot (2007)):

\[\text{[CP \ What}_1 \ \text{[C}'_1:s \ \text{do [TP:s you [T}''_1:s \ T [vP:s t}_you \ [v}''_1:s \ v [vP:s \ \text{think [CP:s that [TP:s \ Mary [T}''_1:s \ T [vP:s t}_Mary \ [v}''_1:s \ v [vP:s \ \text{bought t}_1 \]}]])])]} \]

(anachronistic notation)
Bewegungen im deutschen Hauptsatz

(12) **Finitumvoranstellung:**
 a. dass Karl das schöne Auto kauft.
 b. Kauft Karl das schöne Auto?
 c. weil Maria den Plan ablehnt.
 d. Lehnt Maria den Plan ab?

(13) **Topikalisierung:**
 a. Kauft Karl das schöne Auto?
 b. Das schöne Auto kauft Karl.
 c. Karl kauft das schöne Auto.
 d. Lehnt Maria den Plan ab?
 e. Den Plan lehnt Maria ab.
 f. Maria lehnt den Plan ab.
Transformationen

Frage: Wie kann Bewegung abgeleitet werden?
Antwort: durch Transformationen

(14) **Transformationen:**
Eine Transformation T nimmt einen Phrasenstrukturbaum P_1 und bildet ihn auf einen anderen Phrasenstrukturbaum P_2 ab.

1. SB steht für Strukturbeschreibung, engl. ‘Structural Description’, SD
2. SV steht für Strukturveränderung, ‘Structural Change’, SC.
4. t_n steht für eine von der Bewegung des n-ten Elements zurückgelassene Spur. (Spur und bewegtes Element werden koindiziert.)

(15) **Finitumvoranstellung** (obligatorisch, per Adjunktion):

\[
\begin{array}{cccccc}
X & C[\varnothing] & Y & V & Z \\
SB: & 1 & 2 & 3 & 4 & 5 \\
SV: & 1 & 4 & 2 & 3 & t_4 & 5 \\
\end{array}
\]

(16) **Topikalisation** (obligatorisch, per Substitution):

\[
\begin{array}{cccccc}
X & [\text{expl}] & C[\text{dekl}] & Y & XP & Z \\
SB: & 1 & 2 & 3 & 4 & 5 & 6 \\
SV: & 1 & 5 & 3 & 4 & t_5 & 6 \\
\end{array}
\]
Bemerkung:
Die Bewegung von V an C heißt \textit{Adjunktion}. Adjunktion kann Strukturen erzeugen, die nicht von den Phrasenstrukturregeln generiert werden können.
(19) CP
 [expl] C′
 C
 V1 C
 kauft [Ø] N
 NP
 IP
 VP
 t1 [PRÄS,3.sg]

(20) CP
 NP2 C′
 N
 das AP N′
 schöne N
 Auto
 IP
 VP
 t1 [PRÄS,3.sg]
 t2
 NP
 kauft [Ø]
 DP
 das AP N′
 schöne N
 Auto
Bemerkungen zu (20):

- Es hätte auch die Objekt-NP *das schöne Auto* bewegt werden können.
- Bisher spricht nichts dagegen, auch zum Beispiel die AP *schöne* zu bewegen. Das Ergebnis ist ungrammatisch, aber dass im Prinzip jede XP bewegt werden kann, zeigt (21).
- Die Bewegung ist *Substitution* in einer bereits existierenden Position. Also brauchen wir noch Phrasenstrukturregeln wie (21).

 b. Gekauft hat Karl das Auto nicht.
 c. Das Auto kaufen will Karl nicht.
 d. In Leipzig kauft Karl das Auto.
 e. Schön hat Karl geschrieben.
 f. Dass er da sein Auto kauft, hätte ich nicht gedacht.

(22) a. CP → [expl] C′
 b. C′ → C IP
Eine wichtige Einteilung der Transformationstypen geht auf Emonds (1976) zurück.

(23) Jede Transformation gehört einem der folgenden drei Typen an:
 a. Sie ist strukturerhaltend (Substitution).
 b. Sie ist lokal (betrifft nur benachbarte Knoten: Adjunktion)
 c. Sie ist eine Wurzeltransformation (d.h., nimmt nur auf den Wurzelsatz Bezug: Adjunktion).
Weitere Transformationen: W-Bewegung

(24) a. (I think) John likes Mary
 b. (I wonder) John likes whom
 c. (I wonder) whom John likes

(25) a. (Ich weiß nicht) – Fritz was gesagt hat
 b. (Ich weiß nicht) was Fritz gesagt hat

(26) a. dass Fritz Maria ein Buch gegeben hat
 b. [expl] CØ Fritz wem ein Buch gegeben hat
 c. [expl] hat-C Fritz wem ein Buch gegeben
 d. Wem hat-C Fritz ein Buch gegeben?
Weitere Transformationen: Scrambling

Scrambling leitet freie Wortstellung im Deutschen in der IP ab.

(27) a. dass der Fritz der Maria das Buch gegeben hat
 b. dass der Fritz das Buch der Maria gegeben hat
 c. dass das Buch der Fritz der Maria gegeben hat
 d. dass das Buch der Maria der Fritz gegeben hat
 e. dass der Maria der Fritz das Buch gegeben hat
 f. dass der Maria das Buch der Fritz gegeben hat

Standardannahme:
Adjunktion einer NP an VP oder IP.

Beobachtung:
Transformationen bilden Phrasenstrukturbäume auf Phrasenstrukturbäume ab; dies ist ein sehr komplexer Mechanismus.
Movement in the Minimalist Program

Assumptions:

- Movement is triggered by appropriate features (which have an EPP property, i.e., require a specifier to be created by movement with certain kinds of categories).
- Movement is required to be successive-cyclic because of a constraint like the PIC, which requires local movement to the closest phase edge.
- Movement is permitted to be successive-cyclic because one of the following hypotheses holds:
 2. Intermediate movement steps can violate the prohibition against non-feature driven movement (Last Resort) so as to satisfy a higher-ranked constraint (Phase Balance, in Heck & Müller (2000, 2003)).
 3. Intermediate movement steps are not the result of genuine movement; rather, intermediate traces are inserted into appropriate positions (Chomsky’s (1995) Form Chain, Takahashi (1994), Fox (2000), Boeckx (2003)).

(28) **Phase Impenetrability Condition** (PIC) (Chomsky (2000, 108), Chomsky (2001b, 13)):
The domain of a head X of a phase XP is not accessible to operations outside XP; only X and its edge are accessible to such operations.

Differences wrt the locality of intermediate movement steps may follow from differences wrt the definition of phases: CP and vP vs., e.g., TP (Richards (2004, 2007)); DP as a
Motivation of the \texttt{Slash} feature approach (late 70s):

1. The complexity of classical transformational grammar (Chomsky (1965)) is due not to the base component (context-free phrase structure rules), but rather to the transformational component (transformations map phrase markers to phrase markers).

2. However, transformations seem necessary to model displacement.

3. Therefore, the task is to capture displacement phenomena without transformations: \texttt{Slash} features.
Gazdar’s (1981) Original Approach: Derived Categories

The structure of displacement constructions (‘movement’ is just a metaphor):

1 (top): landing site of movement
2 (middle): movement path
3 (bottom): base position of movement

(29) Movement dependencies:

[What... [do you think that Mary bought]

Let V_N be a set of basic category symbols. The set of derived categories $D(V_N)$ is defined as in (30).

(30) Derived categories:

$$D(V_N) = \{\alpha/\beta: \alpha, \beta \in V_N\}$$

- Suppose that S and NP are the only kinds of categories.
- Then there are four derived categories:
 NP/NP, NP/S, S/NP, S/S.
- What follows the basic category has become known as the Slash feature. The Slash feature signals that something is missing (and what).
G is the set of base rules. For each syntactic category β, there is a subset of the set of non-terminal symbols V_N whose members can dominate β according to the rules in G. This set is called V_β ($V_\beta \subseteq V_N$). Then, for each category β ($\beta \in V_N$), a finite set of derived rules $D(\beta, G)$ can be defined.

(31) **Derived Rule Schema** (also cf. ‘Slash Introduction Metarule’ in Gazdar et al. (1985)):

$$D(\beta, G) = \{[\alpha/\beta \sigma_1 ... \sigma_i/\beta ... \sigma_n] : [\alpha \sigma_1 ... \sigma_i ... \sigma_n] \in G \& 1 \leq i \leq n \& \alpha, \sigma_i \in V_\beta.$$

Note:
Node admissibility conditions replace phrase structure rules here; this is not really important.

(32) a. Phrase structure rule:

$$S \rightarrow NP \ VP$$

b. Node admissibility condition:

$$[S \ NP \ VP \]$$
(33) $G =$

 a. $\{[S \text{ NP } \text{ VP}]\}$,
 b. $[\text{ VP } \text{ V } \text{ VP}']$,
 c. $[\text{ VP } \text{ V } \text{ NP}]$,
 d. $[\text{ PP } \text{ P } \text{ NP}]$,
 e. $[S' \text{ that } S]$,
 f. $[\text{ VP } \text{ V } S']$,
 g. $[\text{ VP}' \text{ to } \text{ VP}]$,
 h. $[\text{ VP } \text{ V } \text{ NP } \text{ PP}]$,
 i. $[\text{ NP } \text{ NP } \text{ PP}]$

(34) $D(\text{NP}, G) =$

 a. $\{[S/\text{NP } \text{ NP/\text{NP } \text{ VP}], [S/\text{NP } \text{ NP } \text{ VP}/\text{NP}]\}$,
 b. $[\text{ VP/\text{NP } \text{ V } \text{ VP}' /\text{NP}]}$,
 c. $[\text{ VP/\text{NP } \text{ V } \text{ NP/\text{NP}]}$,
 d. $[\text{ PP/\text{NP } \text{ P } \text{ NP/\text{NP}]}$,
 e. $[S'/\text{NP } \text{ that } S/\text{NP}]}$,
 f. $[\text{ VP/\text{NP } \text{ V } S'/\text{NP}]}$,
 g. $[\text{ VP'/\text{NP } \text{ to } \text{ VP/\text{NP}]}$,
 h. $[\text{ VP/\text{NP } \text{ V } \text{ NP/\text{NP } \text{ PP}], [VP/\text{NP } \text{ V } \text{ NP } \text{ PP}/\text{NP}]}$,
 i. $[\text{ NP/\text{NP } \text{ NP/\text{NP } \text{ PP}], [NP/\text{NP } \text{ NP } \text{ PP}/\text{NP}]}$}

(35) $D(\text{PP}, G) =$

 a. $\{[S/\text{PP } \text{ NP/\text{PP } \text{ VP}], [S/\text{PP } \text{ NP } \text{ VP}/\text{PP}]}$,
 b. $[\text{ VP/\text{PP } \text{ V } \text{ VP'/\text{PP}]}$,
 c. $[\text{ VP/\text{PP } \text{ V } \text{ NP/\text{PP}]}$,
 d. $[\text{ PP/\text{PP } \text{ P } \text{ NP/\text{PP}]}$,
 e. $[S'/\text{PP } \text{ that } S/\text{PP}]}$,
 f. $[\text{ VP/\text{PP } \text{ V } S'/\text{PP}]}$,
 g. $[\text{ VP'/\text{PP } \text{ to } \text{ VP/\text{PP}]}$,
 h. $[\text{ VP/\text{PP } \text{ V } \text{ NP/\text{PP } \text{ PP}], [VP/\text{PP } \text{ V } \text{ NP } \text{ PP}/\text{PP}]}$,
 i. $[\text{ NP/\text{PP } \text{ NP/\text{PP } \text{ PP}], [NP/\text{PP } \text{ NP } \text{ PP}/\text{PP}]}$}
Derived rules regulate the percolation of Slash features in the middle. In addition, rules are needed for the top and for the bottom of displacement constructions. These latter rules are non-derived rules.

(36) **Bottom** (‘Slash Termination’):
\[<4, [\alpha/\alpha t], h_\alpha > \]
 \((t = \text{trace}; h = \text{denotation of trace})\)

(37) Features for clausal categories:
 a. \([\pm C(omplement), [\pm R(eltive)], [\pm Q(interrogative)]\]
 b. \(S = [-C,-R,-Q]\)
 c. \(S' = [\pm C,-R,-Q]\)
 d. \(R = [+C,+R,-Q]\)
 e. \(Q_1 = [-C,-R,+Q]\)
 f. \(Q_2 = [+C,-R,+Q]\)

(38) Relative clause rule:
\[<5, [NP \ NP R], \lambda R[NP'](R') > \]

(39) **Top** (for relative clauses):
 a. \[<6, [R (NP[\pm wh,+pro]) S/NP], (...) > \]
 b. \[<7, [R PP[+wh,+pro]) S/PP], (...) > \]
Example and Constraints

(40) Movement of an object pronoun:
\[\text{[NP [NP the man] [R [NP that[−wh,+pro] [S/NP [NP Fido] [VP/NP [V chased] [NP/NP t]]]]]]} \]

Constraints can be encoded as restrictions on derived category formation.

(41) A-over-A Principle (Chomsky (1964)):
In a structure \[... [A ... [A ...] ...] ... , \] an operation can only affect the higher, more inclusive category A.

(42) a. \[\text{[DP}_1 \text{ My letter to [DP}_2 \text{ a friend in Italy]]} \text{ got lost} \]
b. \[*[\text{DP}_2 \text{ Who] did [DP}_1 \text{ my letter to t}_2 \text{] get lost } \]

(43) A-over-A Principle (Gazdar (1981)):
\(\alpha \neq \beta \) in (44) (= (31)).

(44) Derived rules:
\[D(\beta,G) = \{[\alpha/\beta \sigma_1 \ldots \sigma_i/\beta \ldots \sigma_n] : [\alpha \sigma_1 \ldots \sigma_i \ldots \sigma_n] \in G \& 1 \leq i \leq n \& \alpha, \sigma_i \in V_\beta. \]
Mehrfache Bewegung in einem Satz

Beobachtung:

- Bisher kann auf jeder Kategorie nur ein \textit{Slash}-Merkmal instantiiert werden. Das leitet die sog. ‘one-hole property’ ab.

- Topikalisierung und Finitumvoranstellung applizieren aber im Deutschen zusammen (ebenso W-Bewegung und Finitumvoranstellung im Hauptsatz; ebenso Topikalisierung oder W-Bewegung und Scrambling; vgl. (45).

- Also: \textit{Slash} hat als Wert eine \textit{Menge von Kategorien}, oder es kann \textit{mehr als ein \textit{Slash}-Merkmal} geben.

(45) a. Karl$\,_{1}$ kauft$\,_{2}$ das t_{1} schöne Auto t_{2}.

b. Was$\,_{1}$ mag$\,_{2}$ Fritz t_{1} t_{2}?

c. Das Buch$\,_{1}$ hat$\,_{2}$ der Maria$\,_{3}$ der Fritz t_{3} t_{1} gegeben t_{2}.

d. Was$\,_{1}$ hat$\,_{2}$ ihm$\,_{3}$ der Fritz t_{3} t_{1} gegeben t_{2}?
Probleme für GPSG

Probleme:

2. Generalisierte Phrasenstrukturgrammatiken mit nicht weiter restringierten Metaregeln sind nicht mehr kontextfrei; sie sind tatsächlich auch unbeschränkte Ersetzungssysteme (Uszkoreit & Peters (1986)).

(46) Jan säit, das mer d’chind₁ em Hans₂ es huus₃ lönd₁ helfed₂
 Jan sagt dass wir [die Kinder [dem Hans [das Haus anstreichen] helfen]
 aastricht₃ lassen]

(47) Nicht-kontextfreie Sprachen:

 a. \(L₁ = \{ a^n b^n c^n \mid n \geq 0 \} \)
 b. \(L₂ = \{ a^n b^m c^n d^m \mid n \geq 0 \} \) (schweizerdeutsches Muster)

Die Zahl der Akkusativ-NPs entspricht der Zahl der Akkusativ zuweisenden Verben (ebenso für den Dativ); und (abgesehen von “es huus”) gehen alle Akkusativ-DPs allen Dativ-DPs voran, und alle Akkusativ zuweisenden Verben allen Dativ zuweisenden Verben.
Conclusion:
For standard movement dependencies (i.e., ignoring complications like parasitic gaps and ATB-extraction), current minimalist approaches that envisage movement to all intervening XP edges turn out to be very similar to \textit{Slash} feature percolation approaches.

(48) A basic difference: \textbf{uniform vs. punctuated} movement paths (Abels (2003, 2008))

<table>
<thead>
<tr>
<th></th>
<th>uniform path</th>
<th>punctuated path</th>
</tr>
</thead>
<tbody>
<tr>
<td>unbounded movement</td>
<td>±</td>
<td>–</td>
</tr>
<tr>
<td>comp-to-comp movement</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>movement to designated phase edges</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>movement to all XP edges</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>movement by \textit{Slash} feature percolation</td>
<td>+</td>
<td>–</td>
</tr>
</tbody>
</table>

Two kinds of evidence:

- reflexes of successive-cyclic movement
- reflexivization and movement
Reflexes of Successive-Cyclic Movement

Standard assumptions:

- There are reflexes of movement (morphological or other).
- These reflexes show up in designated positions and thus support theories based on punctuated paths.

Some reflexes of movement:

- choice of complementizer in Modern Irish (see McCloskey (1979))
- *wh*-agreement in Chamorro (see Chung (1994))
- partial *wh*-movement in Ancash Quechua (see Cole (1982)), Iraqi Arabic (see Wahba (1982)), and German (if the *wh*-scope marker was is actually the realization of a moved *wh*-feature; see Cheng (2000), Sabel (2000))
- obligatory V-to-C raising with (certain types of) *wh*-phrases in Spanish (see Torrego (1984), Baković (1998)) and Basque (see Ortiz de Urbina (1989))
- selection of subject pronouns in Ewe (see Collins (1993, 1994))
- tonal downstep in Kikuyu (see Clements, McCloskey, Maling & Zaenen (1983))
- *meN* deletion in colloquial Singapore Malay (see Cole & Hermon (2000))
- *wh*-copying in German (see Fanselow & Mahajan (2000))
- obligatory CP extraposition in German (see Müller (1998))
- stranding in Dutch (see Barbiers (2002))
Reflexes of Successive-Cyclic Movement: Ewe

However:
It is not always clear that the reflex of movement can be tied to standard phase edges. For instance, movement in Ewe affects SpecT (i.e., the TP domain): Optionally, a different form of subject pronoun can be chosen if movement to SpecC takes place (see Collins (1993, 1994)).

(49) Focus movement and subject pronoun choice in Ewe:

\[\text{Kofi} \quad \text{e} \quad \text{me gble} \ [CP \ t'_1 \ \text{be} \ [TP \ \text{é/wo fo} \ t_1]] \]

\[\text{Kofi} \quad \text{FOC I} \quad \text{said} \quad \text{that} \quad \text{he} \quad \text{hit} \]

‘It was Kofi that I said that he hit.’

(50) Subject pronoun choice without focus movement in Ewe:

a. \[\text{Kofi}_1 \quad \text{e} \quad \text{me gble na} \ t_1 \ [CP \ \text{be} \ \text{é fo} \ \text{Kosi}] \]

\[\text{Kofi} \quad \text{FOC I} \quad \text{said} \quad \text{to} \quad \text{that} \quad \text{he} \quad \text{hit} \quad \text{Kosi} \]

‘It was Kofi that I told that he hit Kosi.’

b. *\[\text{Kofi}_1 \quad \text{e} \quad \text{me gble na} \ t_1 \ [CP \ \text{be} \ \text{wo fo} \ \text{Kosi}] \]

\[\text{Kofi} \quad \text{FOC I} \quad \text{said} \quad \text{to} \quad \text{that} \quad \text{he} \quad \text{hit} \quad \text{Kosi} \]

‘It was Kofi that I told that he hit Kosi.’

Consequence: It is unclear whether reflexes of movement can be taken to argue for punctuated paths.
(51) Pit-stop reflexive (Barss (1986)):

a. *Jane believes (that) John$_1$ thinks (that) she likes some pictures of himself$_1$

b. Which pictures of himself$_1$ does Jane believe (that) John$_1$ thinks □ (that) she likes?

c. *Mary told John$_1$ that she liked these pictures of himself$_1$

d. Which pictures of himself$_1$ did Mary tell John$_1$ □ that she liked?

Consequences:

1. Reflexivization must be possible in intermediate positions.

2. The examples in (51) cannot yet decide between a punctuated and a uniform approach (the latter can postulate the relevant information in SpecC).
Claim (Abels (2003, 2008)): There is an argument for punctuated paths on the basis of raising constructions.

(52) Pit-stop reflexive with a seem experiencer:
 a. [Which pictures of himself]$_1$ did it seem to John [CP □ that Mary liked t$_1$] ?
 b. *[Which pictures of himself]$_1$ did Mary$_2$ seem to John [TP (□) t$_2$ to like t$_1$] ?

Assumption:
Raising infinitives are TPs (not CPs).

Argument:
1. Uniform approach: Reflexivization should be possible via the □ position (SpecT, or TP[SLASH:NP]) in (52-b).
2. Punctuated approach: Reflexivization should be impossible in (52-b) if SpecT is not a landing site for successive-cyclic movement (e.g., if it is not a phase edge).
3. (52-b) is ungrammatical, which supports a punctuated approach.
(28) **Pit-stop reflexive with a seem experiencer:**

a. \[
\text{[Which pictures of himself]}_1 \text{ did it seem to John } [\text{CP } \square \text{ that Mary liked } t_1]
\]

b. *[\[Which pictures of himself]_1 \text{ did Mary}_2 \text{ seem to John } [\text{TP } (\square) t_2 \text{ to like } t_1]

However:

1. When *which picture of himself* in (52-b) moves to SpecT (in a uniform approach), the intervening subject *Mary* is still present.

2. *Mary* is also still present when the intended antecedent *John* is merged.

3. Therefore, *Mary* will intervene, and block binding of the reflexive by *John* (as a closer potential antecedent) even if *which picture of himself* moves to SpecT (or TP has the appropriate \textsc{slash} feature), given either m-command or tucking-in after wh-movement to SpecT.

4. It is unlikely that there can be a subsequent step in the derivation where *Mary* ceases to be an intervener and permits binding of the reflexive by *John*.

Consequence: It is unclear whether pit-stop reflexives can be taken to argue for punctuated paths.

