1. The Linear Correspondence Axiom (LCA)

Ref.: Kayne (1994)

Linear ordering of terminal symbols (L):

1. transitive: \(\forall x,y,z: \langle x,y,z \rangle \in L \rightarrow \langle x,z \rangle \in L \)
2. total: \(\forall x,y,z: \langle x,y,z \rangle \in L \)
3. antisymmetric: \(\forall x,y: \langle x,y,z \rangle \in L \rightarrow \langle y,x,z \rangle \in L \)

2. Domains of terminal symbols of a phrase structure tree \(P \)

a. \(A = \{ \langle X,Y \rangle \} \), such that for each \(j \): \(X \), \(Y \) c-commands \(Z \) asymmetrically
b. \(T = \{ \langle X,Y \rangle \} \), such that for each \(i \): \(X \), \(Y \) c-commands \(Z \) symmetrically

c. \(d(X) = \) set of terminal symbols that are dominated by a non-terminal \(X \)

Consequences:

a. A head precedes its complement (\(\beta \)).

Assumption about adjuncts and c-command:

a. A category can consist of several segments: adjuction.

b. \(X \) c-commands \(Y \) iff \(X \) and \(Y \) are categories and \(X \) excludes \(Y \) and every category that dominates \(X \) dominates \(Y \).

The shape of phrases under Kayne’s LCA:

\[
\begin{array}{c}
\text{XP} \\
\alpha \quad \beta
\end{array}
\]

Difference between Kayne (1994) and Chomsky (1995):

- Kayne’s original LCA restricts possible phrase markers.

2. Barss’ Generalization

Ref.: Barss (1986)

Barss’ Generalization:

Reconstruction of \(\alpha \) to its trace \(\beta \) is blocked if \(\alpha \) does not c-command \(\beta \) at S-structure.

\[[\text{DP} \text{, Some young lady seems } t_1 \text{ to be likely } t_1 \text{ to dance with } \text{[DP, every senator] }] \]

a. \(\exists > \forall \): possible
b. \(\forall > \exists \): possible

\[[\text{AP} \text{, How likely } t_1 \text{ to dance with } \text{[DP, every senator] }] \text{ does } [\text{DP, some young lady] } \text{ seem to be } t_2 ? \]

a. \(\exists > \forall \): possible
b. \(\forall > \exists \): impossible

Analysis in Heck & Assmann (2012):

(i) Scope requires c-command at LF.
(ii) Scope reversal requires reconstruction at LF; traces do not suffice for interpretation (but show possible reconstruction sites).
(iii) The Strict Cycle Condition (Chomsky (1973)) constrains LF operations: Within the current cyclic domain \(\alpha \), no operation may exclusively affect positions within another cyclic domain \(\beta \); this is dominated by \(\alpha \).

3. Weak Crossover

Strong Crossover:

a. Who \(t_1 \) does he \(t_1 \) like \(t_1 \)?

Weak Crossover:

a. *(\text{DP})* Which boy \(t_1 \) does \(\text{[DP, his] } \text{ mother] } \) like \(t_1 \)?

b. \([\text{DP, John}, [\text{DP, his, mother}] \) likes \(t_1 \)

Standard assumption:

Accounting for Strong Crossover is easy (e.g., by invoking Principle C); accounting for Weak Crossover (where the incriminating coindexed pronoun does not c-command the trace of the moved item) is not.
Observation:
The Weak Crossover Constraint only shows up with pronouns that must be interpreted as bound variables.

(14) **Condition on Bound Variable Pronouns** (Heim (1989), Reinhart (1983), Mahajan (1990)): A bound variable pronoun must be co-indexed with a c-commanding A-position at S-structure.

(15) **Raising feeds CBVP satisfaction:**

\[\text{[DP}_1 \text{ Every boy]} \text{ seems to } [\text{DP}_2 \text{ his}_1 \text{ mother }] \text{ t}_1 \text{ to be intelligent }] \]

Bibliography

