Exercises for Experimental Physics 1 - IPSP

Prof. Dr. J. Käs, Dr. M. Zink
Exercise Sheet 5 (WS 2011/12)

Date of Issue: \quad Nov. $4^{\text {th }} 2011$

Date of Submission: Nov. $1^{\text {th }} 2011$

Submission Place: Marked mailbox next to room 302 (Linnestr. 5)
Submission Time: 11:00 a.m. at the submission day noted above
Please note: Write your name and matriculation number on EACH sheet of paper. Only submit the calculations and results for exercise 1-3, exercise 4 will be discussed during the instruction classes.

Exercises:

1. A force F_{x} acts on a particle that has a mass of 1.5 kg . The force is related to the position x of the particle by the formula $F_{x}=C x^{3}$, where $C=0.50$ if x is in meters and F_{x} is in newtons. (a) What are the SI units of C ? (b) Find the work done by this force as the particle moves from $x=3.0 \mathrm{~m}$ to $x=1.5 \mathrm{~m}$. (c) At $x=3.0 \mathrm{~m}$, the force points opposite the direction of the particle's velocity (speed is $12.0 \mathrm{~m} / \mathrm{s}$). What is its speed at $x=1.5 \mathrm{~m}$? (8 Points)
2. A particle of mass m moves from rest at $t=0$ under the influence of a single constant force \vec{F}. Show that the power delivered by the force at any time t is $P=F^{2} t / m$. (5 Points)
3. A $2.40-\mathrm{kg}$ block is dropped onto a spring and platform (Figure 1) of negligible mass. The block is released a distance of 5.00 m above the platform. When the block is momentary at rest, the spring is compressed by 25.0 cm . Find the speed of the block when the compression of the spring is only 15.0 cm . (7 Points)
4. When a particle moves in a circle that is centered at the origin and the magnitude of its position vector \vec{r} is constant. (a) Differentiate $\vec{r} \cdot \vec{r}=r^{2}=$ constant with respect to time to show that $\vec{v} \cdot \vec{r}=0$, and therefore $\vec{v} \perp \vec{r}$. (b) Differentiate $\vec{v} \cdot \vec{r}=0$ with respect to time and show that $\vec{a} \cdot \vec{r}+v^{2}=0$, and therefore $a_{r}=-v^{2} / r$. (c) Differentiate $\vec{v} \cdot \vec{v}=v^{2}$ with respect to time to show that $\vec{a} \cdot \vec{v}=d v / d t$, and therefore $a_{t}=d v / d t$.

Figure 1: Exercise 3

