Universität Leipzig, Fakultät für Physik und Geowissenschaften

Exercises for Experimental Physics 1 - IPSP
 Prof. Dr. J. Käs, Dr. M. Zink
 Exercise Sheet 10 (WS 2011/12)

Date of Issue: Dec. $9^{\text {th }} 2011$
Date of Submission: Dec. $\mathbf{1 6}^{\text {th }} 2011$

Submission Place: Marked mailbox next to room 302 (Linnestr. 5)
Submission Time: 11:00 a.m. at the submission day noted above
Please note: Write your name and matriculation number on EACH sheet of paper. Only submit the calculations and results for exercise 1-3, exercise 4 will be discussed during the instruction classes.

Exercises:

1. Two point masses m_{1} and m_{2} are separated by a massless rod of length L. (a) Write an expression for the moment of inertia I about an axis perpendicular to the rod and passing through it a distance x from mass m_{1}. (b) Calculate $d I / d x$ and show that I is at a minimum when the axis passes through the center of mass of the system. (6 Points)
2. Use integration to determine the moment of inertia about its axis of a uniform right circular cone of height H, base radius R, and mass M. Use Figure 1. (7 Points)
3. A uniform horizontal disk of mass M and radius R is spinning about the vertical axis through its center with an angular speed ω. When the spinning disk is dropped onto a horizontal tabletop, kinetic-frictional forces on the disk oppose its spinning motion. Let μ_{k} be the coefficient of kinetic friction between the disk and the tabletop. (a) Find the torque $d \tau$ exerted by the force of friction on a circular element of radius r and width $d r$. (b) Find the total torque exerted by friction on the disk. (c) Find the time required for the disk to stop rotating. (7 Points)
4. As the chief design engineer for a major toy company, you are in charge of designing a "loop-the-loop" toy for youngsters. The idea, as shown in Figure 2, is that a ball of mass m and radius r will roll down an inclined track and around the loop without slipping. The ball starts from rest at a height h above the tabletop that supports the whole track. The loop radius is R. Determine the minimum height h, in terms of R and r, for which the ball will remain in contact with the track during the whole of its loop-the-loop journey. (Do not neglect the size of the ball's radius when doing this calculation.)

Figure 1: Exercise 2

Figure 2: Exercise 4

