Exercises for Experimental Physics 1 - IPSP

Prof. Dr. J. Käs, Dr. M. Zink
 Exercise Sheet 4 (WS 2013/14)

Date of Issue: Nov. ${ }^{\text {th }} 2013$

Date of Submission: Nov. $15^{\text {th }} 2013$

Submission Place: Marked mailbox next to room 302 (Linnestr. 5)
Submission Time: 11:00 a.m. at the submission day noted above
Please note: Write your name and matriculation number on EACH sheet of paper. Only submit the calculations and results for exercise 1-3, exercises 4 and 5 will be discussed during the seminar.

Exercises:

1. A force F_{x} acts on a particle that has a mass of 1.5 kg . The force is related to the position x of the particle by the formula $F_{x}=C x^{3}$, where $C=0.50$ if x is in meters and F_{x} is in newtons. (a) What are the SI units of C ? (b) Find the work done by this force as the particle moves from $x=3.0 \mathrm{~m}$ to $x=1.5 \mathrm{~m}$. (c) At $x=3.0 \mathrm{~m}$, the force points opposite the direction of the particle's velocity (speed is $12.0 \mathrm{~m} / \mathrm{s}$). What is its speed at $x=1.5 \mathrm{~m}$? Can you tell its direction of motion at $x=1.5 \mathrm{~m}$ using only the work-kinetic-energy theorem (Work $\left.W=E_{k i n, \text { final }}-E_{k i n, \text { initial }}\right)$? Explain. (6 Points)
2. A $7.5-\mathrm{kg}$ box is being lifted by means of a light rope that is threaded through a single, light, frictionless pulley that is attached to the ceiling. (a) If the box is being lifted at a constant speed of $2.0 \mathrm{~m} / \mathrm{s}$, what is the power delivered by the person pulling on the rope? (b) If the box is lifted, at constant acceleration, from rest on the floor to a height of 1.5 m above the floor in 0.42 s , what average power is delivered by the person pulling on the rope? (6 Points)
3. A block of mass m on a horizontal frictionless tabletop is attached by a swivel to a spring that is attached to the ceiling (Figure 1). The vertical distance between the top of the block and the ceiling is y_{0}, and the horizontal position is x. When the block is at $x=0$, the spring, which has force constant k, is completely unstressed. (a) What is F_{x}, the x component of the force on the block due to the spring, as a function of x ? (b) Show that F_{x} is proportional to x^{3} for sufficiently small values of $|x|$. (c) If the block is released from rest at $x=x_{0}$ (where $\left|\overrightarrow{0_{0}}\right| \ll\left|\overrightarrow{y_{0}}\right|$), what is its speed when it reaches $x=0$? (8 Points)
4. When a particle moves in a circle that is centered at the origin and the magnitude of its position vector \vec{r} is constant. (a) Differentiate $\vec{r} \cdot \vec{r}=r^{2}=$ constant with respect to time to show that $\vec{v} \cdot \vec{r}=0$, and therefore $\vec{v} \perp \vec{r}$. (b) Differentiate $\vec{v} \cdot \vec{r}=0$ with respect to time and show that $\vec{a} \cdot \vec{r}+v^{2}=0$, and therefore $a_{r}=-v^{2} / r$. (c) Differentiate $\vec{v} \cdot \vec{v}=v^{2}$ with respect to time to show that $\vec{a} \cdot \vec{v}=d v / d t$, and therefore $a_{t}=d v / d t$.
5. Calculate the work along the path C from the following line integral:

$$
W=\int_{C} f(\vec{r}) d \vec{r}
$$

with

$$
\vec{r}=\binom{x}{y} \text { and } f(\vec{r})=\binom{1}{2 x} .
$$

Figure 1: Exercise 5

Figure 2: Exercise 3

