Exercises for Experimental Physics 3 - IPSP
 Prof. Dr. J. Käs, Dr. M. Zink
 Exercise Sheet 8 (WS 2012/13)

Date of Issue to Students: Nov. $30^{\text {th }} 2012$
Date of Submission: Dec. $7^{\text {th }} 2012$

Submission Place: Marked mailbox next to room 302 (Linnestr. 5)
Submission Time: 11:00 a.m. at the submission day noted above
Please note: Write your name and matriculation number on EACH sheet of paper. Only submit the calculations and results for exercise $1-3$, exercise 4 will be discussed during the instruction classes.

Exercises:

1. A ray of light begins at the point $(-2.00 \mathrm{~m}, 2.00 \mathrm{~m}, 0.00 \mathrm{~m})$, strikes a mirror in the $y=0$ plane at some point ($x, 0,0$), and reflects through the point $(2.00 \mathrm{~m}, 6.00 \mathrm{~m}, 0.00 \mathrm{~m})$.
(a) Find the value of x that makes the total distance traveled by the ray a minimum.
(b) What is the angle of incidence on the reflecting plane? (c) What is the angle of reflection?
(8 Points)
2. To produce a polarized laser beam a plate of transparent material, (Figure 1) is placed in the laser cavity and oriented so the light strikes it at the polarizing angle. Such a plate is called a Brewster window. Show that if $\theta_{P 1}$ is the polarizing angle for the n_{1} to n_{2} interface, then $\theta_{P 2}$ is the polarizing angle for the n_{2} to n_{1} interface. (7 Points)
3. A light ray passes through a prism with an apex angle of α, as shown in Figure 2. The ray and the bisector of the apex angle bisect at right angles. Show that the angle of deviation δ is related to the apex angle and the index of refraction of the prism material by $\sin \left[\frac{1}{2}(\alpha+\delta)\right]=n \sin \left(\frac{1}{2} \alpha\right) .(5$ Points)
4. Show that the angle of deviation δ is a minimum if the angle of incidence is such that the ray and the bisector of the apex angle α (Figure 2) intersect at right angles.

Figure 1: Exercise 2

Figure 2: Exercise 3 and 4

