UNIVERSITAT LEIPZIG

Experimental Physics IV IPSP
 Problem Set 4

Deadline: Thursday, 05.05.2011, before the lecture

Problem 10:

Two observers move towards each other. One sends a signal to the receiver. Classically (signal = sound), the formula for the Doppler-shifted frequency is given by

$$
f_{D}=\frac{c+v_{D}}{c-v_{S}} f_{S}
$$

with the propagation speed of the signal c, the velocity of the detector v_{D}, the velocity of the source v_{S}, the emitted frequency of the source f_{s} and the detected frequency f_{D}.

Furthermore, in the equivalent case of a relativistic signal (e.g. light, EM wave) the time dilation, which describes the difference of elapsed time between two relative moving observers, is given by

$$
\Delta T^{\prime}=\frac{\Delta T}{\sqrt{1-v^{2} / c^{2}}}
$$

with the elapsed time ΔT^{\prime} in the reference frame of the detector and the elapsed time ΔT in the reference frame of the source with the relative velocity v.
a) Show that the relativistic Doppler-shifted frequency can be calculated to

$$
f_{D, \text { rel }}=\frac{\sqrt{1+v / c}}{\sqrt{1-v / c}} f_{S}
$$

depending only on the relative speed v. Compare it to the classical Doppler-effect. What is special?
b) How fast do you have to drive in order to observe a red ($\lambda_{\text {red }}=670 \mathrm{~nm}$) traffic light "switching" to green $\left(\lambda_{\text {green }}=547 \mathrm{~nm}\right)$ due to the relativistic Doppler-effect?

Hint: Einstein's postulate in On the electrodynamics of Moving Bodies: The speed of light is constant in all inertial systems, regardless how they move relative to each other. Therefore, Use an appropriate frame of reference.

Problem 11:

The wave function for the ground state of the hydrogen-atom is given by

$$
\Psi(r, t)=\frac{1}{\sqrt{\pi} a_{0}^{3 / 2}} e^{-\frac{r}{a_{0}}} e^{i \frac{E}{\hbar} t}
$$

with the Bohr radius a_{0}.
a) Calculate the radial probability distribution $P(r)$ using the formula

$$
P(r) \mathrm{d} r=|\Psi(r, t)|^{2} \mathrm{~d} V
$$

b) Calculate the most probable distance r_{0} and the mean radius $\langle r\rangle$ given by

$$
\langle r\rangle=\langle\Psi| r|\Psi\rangle=\int \Psi^{*} r \Psi \mathrm{~d} V=\int_{0}^{\infty} r P \mathrm{~d} r
$$

Hint:

$$
\begin{aligned}
& \mathrm{d} V=\mathrm{d} x \mathrm{~d} y \mathrm{~d} z=\mathrm{d}^{3} r \\
& \int_{0}^{\infty} x^{n} e^{-\alpha x} \mathrm{~d} x=\frac{n!}{\alpha^{n+1}}
\end{aligned}
$$

Problem 12:

The probability distribution of a particle in a one-dimensional box (dimension of the box: $0<x<d$) is given by

$$
\begin{gathered}
P_{\text {classical }}(x)=\frac{1}{d} \\
P_{n, \text { quantum }}(x)=\frac{2}{d} \sin ^{2}\left(\frac{n \pi x}{d}\right), \quad n=1,2,3, \ldots
\end{gathered}
$$

for a classical and quantum-mechanical particle, respectively.
a) Calculate the expectation values $\langle x\rangle$ and $\left\langle x^{2}\right\rangle$ for the classical and the quantum-mechanical particle in a box.
b) What happens in the limit case of increasing n ?

Hint:

$$
\begin{gathered}
\int \sin ^{2} x \mathrm{~d} x=\frac{x}{2}-\frac{1}{4} \sin 2 x \\
\int x \sin ^{2} x \mathrm{~d} x=\frac{x^{2}}{4}-\frac{x}{4} \sin 2 x-\frac{1}{8} \cos 2 x \\
\int x^{2} \sin ^{2} x \mathrm{~d} x=\frac{x^{3}}{6}-\left(\frac{x^{2}}{4}-\frac{1}{8}\right) \sin 2 x-\frac{x}{4} \cos 2 x .
\end{gathered}
$$

