UNIVERSITAT LEIPZIG

Experimental Physics IV IPSP Problem Set 7

Deadline: Thursday, 26.05.2011, before the lecture

Problem 19:

The wave function of a particle in a box is given by

$$
\Psi_{\mathrm{n}}(x)=\sqrt{2 / d} \sin \left(\frac{\pi n}{d} x\right)
$$

Calculate:
a) $\langle n \mid m\rangle$
b) $\langle n| \hat{x}|n\rangle$ and $\langle n| \hat{x}^{2}|n\rangle$
c) $\langle n| \hat{p}|n\rangle$ and $\langle n| \hat{p}^{2}|n\rangle$
d) $\Delta x \Delta p$ with $\Delta f=\sqrt{\langle n| \hat{f}^{2}|n\rangle-\langle n| \hat{f}|n\rangle^{2}}$
e) $\langle n| \widehat{H}|n\rangle$
f) What do you have calculated in the previous examples?

Problem 20:

The ladder operators $l^{ \pm}$for the particle in a box are defined by

$$
l^{ \pm}|n\rangle=|n \pm 1\rangle
$$

Derive the up- and down-ladder operator for the particle in a box.
Hint:

$$
\begin{gathered}
\sin (x+y)=\sin x \cos y+\cos x \sin y \\
\cos (a x)=\frac{1}{a} \frac{\partial}{\partial x} \sin (a x)
\end{gathered}
$$

Problem 21:

In the ground state you cannot further "ladder down", therefore the down-ladder operator must fulfill the equation $l^{-}|1\rangle=0$. Use this equation in order to obtain an ODE for the ground state and solve it.

