UNIVERSITAT LEIPZIG

Experimental Physics IV IPSP Problem Set 8

Deadline: Thursday, 02.06.2011, before the lecture

Problem 22:

The stationary wave function of the ground state of the hydrogen atom is given by

$$
\Psi(r)=\frac{1}{\sqrt{\pi} a_{0}^{3 / 2}} e^{-\frac{r}{a_{0}}}
$$

with the Bohr radius $a_{0}=4 \pi \varepsilon_{0} \hbar^{2} / m e^{2}$.
Show that this wave function is indeed a solution of the time-independent SE for the hydrogen atom.
a) Write down the SE for the hydrogen atom. Use spherical coordinates and the Laplace operator in spherical coordinates.
b) Plug in the wave function and energy of the ground state of hydrogen.

Problem 23:

The solution of the SE for a particle in a box $(0<x<d)$ is

$$
\Psi_{n}(x)=\left\{\begin{array}{ccc}
0 & \text { for } & x<0 \\
\sqrt{2 / d} \sin \left(\frac{n \pi}{d} x\right) & \text { for } & 0<x<d \\
0 & \text { for } & x>d
\end{array}\right.
$$

Translate the coordinate system so, that the new position of the box will be $-d / 2<x<+d / 2$. Calculate the "new" wave functions. What is the difference between both representations of the same wave functions?
Name some possible applications for quantum dots (or nano-particles in general) for science and industries/economy (preferable applications not mentioned in the lecture).

Problem 24:

An incoming wave (coming from $-\infty$) with finite positive energy E is scattered at a potential $V(x)=-g \delta(x)$ with the delta distribution $\delta(x)$. One part of the incoming wave is reflected and the remaining is transmitted. Therefore, the general solution is

$$
\Psi=\left\{\begin{array}{ccc}
e^{i k x}+r e^{-i k x} & \text { for } \quad x<0 \\
t e^{i k x} & \text { for } \quad x>0
\end{array}\right.
$$

with the wave vector $k=\sqrt{2 m E} / \hbar$ and $1+r=t$
Calculate the Reflection and Transmission coeeficient $R=|r|^{2}$ and $T=|t|^{2}$.
a) Use your knowledge about the delta-distribution to verify the equation for the boundary condition:

$$
\partial_{x} \Psi\left(0^{-}\right)-\partial_{x} \Psi\left(0^{+}\right)=\frac{2 m g}{\hbar^{2}} \Psi(0)
$$

b) Calculate r and t using the boundary condition above.
c) Finally, calculate R and T. Draw a sketch of the energy-dependent Reflection and transmission coefficient $R(E)$ and $T(E)$.

