UNIVERSITÄT LEIPZIG

Experimental Physics IV IPSP Problem Set 10

Deadline: Thursday, 16.06.2011, before the lecture

Problem 27:

The Lennard-Jones potential

$$V(r) = \varepsilon \left(\left(\frac{r_0}{r}\right)^{12} - 2 \left(\frac{r_0}{r}\right)^6 \right)$$

is a basic model to describe the interaction of two non-charged atoms.

- a) Calculate the position r_{\min} and the depth V_{\min} of the minimum of the potential
- b) Derive the Taylor series at the minimum r_{\min} up to the second order (harmonic oscillator order) to obtain an approximate potential.
- c) Draw a sketch of both potentials.

Problem 28:

The SE of the harmonic oscillator is given by

$$\widehat{H} = \frac{\widehat{p}^2}{2m} + \frac{1}{2}m\omega^2 \widehat{x}^2 \,.$$

The position and momentum operator can be expressed by

$$\hat{x} = x_0 + \delta x$$
 with $\sqrt{\langle (\delta x)^2 \rangle} = \Delta x$
 $\hat{p} = p_0 + \delta p$ with $\sqrt{\langle (\delta p)^2 \rangle} = \Delta p$

with the mean position $x_0 = \langle \Psi | \hat{x} | \Psi \rangle$ and mean momentum $p_0 = \langle \Psi | \hat{p} | \Psi \rangle$ and a fluctuation of the position δx and momentum δp around the mean value with the standard deviation Δx and Δp .

Use the representation of the position and momentum and Heisenberg's uncertainty principle to calculate the energy for the ground state.

- a) Utilize the symmetry of the system to obtain x_0 and p_0 .
- b) Derive the Hamiltonian $\langle \hat{H} \rangle$ as a function of $\Delta p \text{ or } \Delta x$ by plugging in \hat{x} and \hat{p} and Heisenberg's uncertainty principle.

2+2+1 points

1+2+2 points

c) The minimum average energy of the harmonic oscillator is the ground state. Therefore, it has to fulfill

$$\frac{\partial \langle \hat{H} \rangle}{\partial (\Delta p)} = \frac{\partial \langle \hat{H} \rangle}{\partial (\Delta x)} = 0 \,.$$

Problem 29:

1+1+1+1+1+1 points

Let A, B and C be operators. The commutator is defined as

$$[A,B] = AB - BA \, .$$

Calculate the following commutators:

- a) $[p_x, x]$ and [p, r] with the momentum operator $p = (p_x, p_y, p_z)$ and position operator r = (x, y, z), (See lecture notes)
- b) $[x, y], [p_y, z]$ and $[p_z, p_x]$.

Show the the following commutator relations:

- c) [A, B + C] = [A, B] + [A, C],
- d) [A, BC] = [A, B]C + B[A, C].

The angular momentum operator $L = (L_x, L_y, L_z)$ is defined by

$$L = r \times p$$
.

Calculate the following commutators:

- e) $[x, L_x]$ and $[p_x, L_x]$,
- f) $[L_x, L_y]$,
- g) $[L_x, L^2]$. *Hint:* "c + d + f = g"