Lecturer: C. Fütterer SS 2011

Tutor: H. Kubitschke

UNIVERSITÄT LEIPZIG

Experimental Physics IV IPSP Bonus Problem Set

Problem 32: 0 points

Look up the solution for the bound state for the δ -potential well (Problem 26). Now, assume a double δ -potential

$$V(x) = -g\left(\delta\left(x + \frac{d}{2}\right) + \delta\left(x - \frac{d}{2}\right)\right).$$

Use simple physical arguments¹ and an ansatz to obtain a qualitative solution for this problem.

Problem 33: 0 points

Show, that the annihilation of an electron and a positron into a single photon in free space $(e^-e^+ \to \gamma)$ violates the energy and/or momentum conservation.

How many photons do you need (at least) for this decay if the spin of the electron and positron are

- a) anti-parallel ↑↓?
- b) parallel ↑↑,

b) paraller i i ,

Use this to explain why positronium ("atom" which consists of an electron and positron) has two different lifetimes ($\tau_1 \approx 140 \, \text{ns}$, $\tau_2 \approx 125 \, \text{ps}$). Which annihilation corresponds to τ_1 and τ_2 , respectively?

-

¹ John Archibald Wheeler's First Moral Principle: Never make a calculation until you know the answer. Make an estimate before every calculation, try a simple physical argument (symmetry! invariance! conservation!) before every derivation, guess the answer to every puzzle.