UNIVERSITAT LEIPZIG

Experimental Physics IV IPSP
 Problem Set 10

Deadline: Thursday, 20.06.2012, before the seminar

Problem 32:

5 points

Electrons that were accelerated with 5000 V are shot on a double slit. 10 m behind the double slit is a screen where the diffraction pattern is recorded. What is the minimal distance between the two slits, when you want to detect all maxima with a standard light microscope with a numerical aperture of 0.5 ? The microscope uses light of the wavelength 550 nm .

Hints: Use the small angle approximation for the calculation of the distance between two maxima or minima. The mass of the electron is $m=511 \mathrm{keV} / \mathrm{c}^{2}$.

Problem 33:

The wave function for the ground state of the hydrogen-atom is given by

$$
\Psi(r, t)=\frac{1}{\sqrt{\pi} a_{0}^{3 / 2}} e^{-\frac{r}{a_{0}}} e^{i \frac{E}{\hbar} t}
$$

with the Bohr radius a_{0}.
a) Calculate the radial probability distribution $P(r)$ using the formula

$$
P(r) \mathrm{d} r=|\Psi(r, t)|^{2} \mathrm{~d} V
$$

b) Calculate the most probable distance r_{0} and the mean radius $\langle r\rangle$ given by

$$
\langle r\rangle=\langle\Psi| r|\Psi\rangle=\int \Psi^{*} r \Psi \mathrm{~d} V=\int_{0}^{\infty} r P \mathrm{~d} r
$$

Hint:

$$
\begin{aligned}
& \mathrm{d} V=\mathrm{d} x \mathrm{~d} y \mathrm{~d} z=\mathrm{d}^{3} r \\
& \int_{0}^{\infty} x^{n} e^{-\alpha x} \mathrm{~d} x=\frac{n!}{\alpha^{n+1}}
\end{aligned}
$$

Let A, B and C be operators. The commutator is defined as

$$
[A, B]=A B-B A
$$

Show the the following commutator relations:
a) $[A, B+C]=[A, B]+[A, C]$,
b) $[A, B C]=[A, B] C+B[A, C]$.

The angular momentum operator $L=\left(L_{x}, L_{y}, L_{z}\right)$ is defined as:

$$
L=r \times p
$$

Calculate the following commutators:
c) $\left[x, L_{x}\right]$ and $\left[p_{x}, L_{x}\right]$,
d) $\left[L_{x}, L_{y}\right]$,
e) $\left[L_{x}, L^{2}\right]$. Hint: "c $+\mathrm{d}+\mathrm{f}=\mathrm{g}$ "

