UNIVERSITÄT LEIPZIG

Experimental Physics IV IPSP Problem Set 2

Deadline Wednesday, 25.04.2012, before the seminar

Problem 4:

A tungsten filament is 3 cm in length and has a diameter of 5 mm. What is its peak wavelength if the tungsten filament has a temperature of 1900°C? What is its emissive power assuming it is a black body?

Problem 5:

Perrin found a further way to derive the Avogadro constant. He dissolved colloids with a diameter of 300nm that posses a $0.2 \frac{g}{cm^3}$ lower density than the liquid. He found that the number of colloids in two layers with a distance d = 1mm behaved like 2:1. The liquid has a temperature of 20°C. Derive the Avogadro constant using this data.

Hint: Use the Boltzmann distribution.

4 points

4 points

Problem 6:

5 points

In Millikan's oil drop experiment an oil droplet (diameter $d = 1\mu m$, density $\rho \approx 0.92 \frac{g}{cm^3}$ is falling between two condensator plates (electric field is turned off, distance of plates: a = 3mm) with a constant velocity downwards. Now, the electric field is switched on (E = 59V) and the droplet is moving upwards with the same velocity.

How many elementary charges does the droplet have?