UNIVERSITAT LEIPZIG

Experimental Physics IV IPSP
 Problem Set 6

Deadline: Thursday, 23.05.2012, before the seminar

Problem 18:

One frame of reference F_{1} is moving relative to another frame of reference F_{2} with a velocity v_{12}, which in turn is also moving relative to another frame of reference F_{3} with a velocity v_{23}. The velocities are parallel.

What's the relative velocity v_{13} between F_{1} and F_{3} ?
Hint: The Lorentz transformation is given by

$$
\begin{gathered}
t=\gamma\left(t^{\prime}+\frac{v}{c^{2}} x^{\prime}\right) \\
x=\gamma\left(x^{\prime}+v t^{\prime}\right)
\end{gathered}
$$

with $\gamma=\left(1-v^{2} / c^{2}\right)^{-1 / 2}$, the elapsed time and position of the resting frame t^{\prime} and x^{\prime}, the elapsed time and position of the moving frame t and x, and the relative velocity v between the frames.

Sketch: Shooting an object with relativistic speed in a spaceship, which also travels with relativistic speed.

observer 3

The electromagnetic tensor is defined by

$$
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}
$$

with the electromagnetic four-potential $A_{\mu}=\eta_{\mu \nu} A^{v}=(\phi,-\vec{A})$.
a) Calculate the entries of the electromagnetic tensor $F_{\mu \nu}$. Hint: There are only 6 independent entries.
b) The electric and magnetic field are calculated via

$$
\begin{gathered}
\vec{E}=\left(E_{x}, E_{y}, E_{z}\right)=-\frac{\partial \vec{A}}{\partial t}-\nabla \phi, \\
\vec{B}=\left(B_{x}, B_{y}, B_{z}\right)=\nabla \times \vec{A} .
\end{gathered}
$$

Show that the electromagnetic field tensor can be rewritten in the following form:

$$
F_{\mu \nu}=\left(\begin{array}{cccc}
0 & E_{x} & E_{y} & E_{z} \\
-E_{x} & 0 & -B_{z} & B_{y} \\
-E_{y} & B_{z} & 0 & -B_{x} \\
-E_{z} & -B_{y} & B_{x} & 0
\end{array}\right)
$$

Problem 20:

Use the equation

$$
\partial_{v} F^{\mu v}=J^{\mu}
$$

with the four-current $J^{\mu}=(\rho, \vec{J})=\left(\rho, J_{x}, J_{y}, J_{z}\right)$, to derive two Maxwell's equations

$$
\begin{gathered}
\nabla \cdot \vec{E}=\rho \\
\nabla \times \vec{B}-\partial_{t} \vec{E}=\vec{J}
\end{gathered}
$$

General Hints:

convention:

$$
\begin{gathered}
F^{\mu v}=\partial^{\mu} A^{v}-\partial^{v} A^{\mu}=\left(\begin{array}{rrrr}
0 & -E_{x} & -E_{y} & -E_{z} \\
E_{x} & 0 & -B_{z} & B_{y} \\
E_{y} & B_{z} & 0 & -B_{x} \\
E_{z} & -B_{y} & B_{x} & 0
\end{array}\right) \\
\partial_{\mu}=\left(\frac{d}{d t}, \frac{d}{d x}, \frac{d}{d y}, \frac{d}{d z}\right) \\
\partial^{\mu}=\left(\frac{d}{d t},-\frac{d}{d x},-\frac{d}{d y},-\frac{d}{d z}\right) \\
c=1, \varepsilon_{0}=1, \mu_{0}=1
\end{gathered}
$$

