Quantum Field Theory of Many-Particle Systems - Problem Set 2

Winter Term 2011/12

Due Date: Wednesday, October 26, 4 p.m., tutorial session

Internet: You can download this problem set at http://www.uni-leipzig.de/~rosenow.

1. Quantization of the Radiation Field 5+5+5 Punkte

In the absence of charges, and in the Coulomb gauge $\nabla \cdot \mathbf{A} = 0$, the electromagnetic field is described by the Lagrangian

$$L = \frac{1}{2} \int_{\Omega} d^3 x \left[\epsilon_0 \left(\partial_t \mathbf{A} \right)^2 + \frac{1}{\mu_0} \mathbf{A} \nabla^2 \mathbf{A} \right]$$

Here, ϵ_0 denotes the vacuum dielectric constant, μ_0 the vacuum permeability, and Ω is a cuboid with extensions L_x , L_y , and L_z . Note that the speed of light is $c = 1/\sqrt{\epsilon_0\mu_0}$.

- a) Derive the equation of motion for **A** by extrimizing the Lagrangian.
- b) Find eigenfunctions $\mathbf{A}_{\mathbf{k}}$ and eigenvalues $\omega_{\mathbf{k}}^2$ of the equation

$$-
abla^2 \mathbf{A} \;=\; rac{\omega_{\mathbf{k}}^2}{c^2} \;\mathbf{A} \;\;.$$

It may be useful to introduce for each **k** a set of orthonormal vectors $\{\xi_{\mathbf{k},1}, \xi_{\mathbf{k},2}\}$ which are both perpendicular to **k**. The time-dependent solution has then a series expansion

$$\mathbf{A}(\mathbf{x},t) \;=\; \sum_{\mathbf{k}} \alpha_{\mathbf{k}}(t) \mathbf{A}_{\mathbf{k}}(\mathbf{x})$$

Insert this series expansion into the Lagrangian, and find the momenta

$$\pi_{\mathbf{k}} = \frac{\partial L}{\partial \dot{\alpha_{\mathbf{k}}}}$$

canonically conjugate to the coordinates $\alpha_{\mathbf{k}}$. Use the Legendre transform $H = \sum_{\mathbf{k}} \pi_{\mathbf{k}} \dot{\alpha}_{\mathbf{k}} - L(\pi_{\mathbf{k}}, \alpha_{\mathbf{k}})$ to obtain the Hamiltonian.

c) The classical Hamiltonian $H(\{\pi_{\mathbf{k}}, \alpha_{\mathbf{k}}\})$ can be quantized by imposing canonical commutation relations

$$[\alpha_{\mathbf{k}}, \alpha_{\mathbf{q}}] = 0, \quad [\pi_{\mathbf{k}}, \pi_{\mathbf{q}}] = 0, \quad [\alpha_{\mathbf{k}}, \pi_{\mathbf{q}}] = i\hbar \,\delta_{\mathbf{k}, \mathbf{q}}$$

on coordinates $\alpha_{\mathbf{k}}$ and canonically conjugate momenta $\pi_{\mathbf{k}}$. In analogy to the one-dimensional harmonic oscillator, we define photon creation and annihilation operators

$$a_{\mathbf{k}} = \sqrt{\frac{\epsilon_0 \omega_{\mathbf{k}}}{2\hbar}} \left(\alpha_{\mathbf{k}} + \frac{i}{\epsilon_0 \omega_{\mathbf{k}}} \pi_{-\mathbf{k}} \right) \quad , \quad a_{\mathbf{k}}^{\dagger} = \sqrt{\frac{\epsilon_0 \omega_{\mathbf{k}}}{2\hbar}} \left(\alpha_{-\mathbf{k}} - \frac{i}{\epsilon_0 \omega_{\mathbf{k}}} \pi_{\mathbf{k}} \right)$$

Show that the $a_{\mathbf{k}}$, $a_{\mathbf{k}}^{\dagger}$ obey the commutation relations of harmonic oscillator ladder operators, and express the Hamiltonian in terms of the $a_{\mathbf{k}}$, $a_{\mathbf{k}}^{\dagger}$.