Quantum Field Theory of Many-Particle Systems - Problem Set 2

Winter Term 2011/12
Due Date: Wednesday, October 26, 4 p.m., tutorial session
Internet: You can download this problem set at http://www.uni-leipzig.de/~rosenow.

1. Quantization of the Radiation Field

In the absence of charges, and in the Coulomb gauge $\nabla \cdot \mathbf{A}=0$, the electromagnetic field is described by the Lagrangian

$$
L=\frac{1}{2} \int_{\Omega} d^{3} x\left[\epsilon_{0}\left(\partial_{t} \mathbf{A}\right)^{2}+\frac{1}{\mu_{0}} \mathbf{A} \nabla^{2} \mathbf{A}\right] .
$$

Here, ϵ_{0} denotes the vacuum dielectric constant, μ_{0} the vacuum permeability, and Ω is a cuboid with extensions L_{x}, L_{y}, and L_{z}. Note that the speed of light is $c=1 / \sqrt{\epsilon_{0} \mu_{0}}$.
a) Derive the equation of motion for \mathbf{A} by extrimizing the Lagrangian.
b) Find eigenfunctions $\mathbf{A}_{\mathbf{k}}$ and eigenvalues $\omega_{\mathbf{k}}^{2}$ of the equation

$$
-\nabla^{2} \mathbf{A}=\frac{\omega_{\mathbf{k}}^{2}}{c^{2}} \mathbf{A}
$$

It may be useful to introduce for each \mathbf{k} a set of orthonormal vectors $\left\{\xi_{\mathbf{k}, 1}, \xi_{\mathbf{k}, 2}\right\}$ which are both perpendicular to \mathbf{k}. The time-dependent solution has then a series expansion

$$
\mathbf{A}(\mathbf{x}, t)=\sum_{\mathbf{k}} \alpha_{\mathbf{k}}(t) \mathbf{A}_{\mathbf{k}}(\mathbf{x})
$$

Insert this series expansion into the Lagrangian, and find the momenta

$$
\pi_{\mathbf{k}}=\frac{\partial L}{\partial \dot{\alpha}_{\mathbf{k}}}
$$

canonically conjugate to the coordinates $\alpha_{\mathbf{k}}$. Use the Legendre transform $H=\sum_{\mathbf{k}} \pi_{\mathbf{k}} \dot{\alpha}_{\mathbf{k}}-$ $L\left(\pi_{\mathbf{k}}, \alpha_{\mathbf{k}}\right)$ to obtain the Hamiltonian.
c) The classical Hamiltonian $H\left(\left\{\pi_{\mathbf{k}}, \alpha_{\mathbf{k}}\right\}\right)$ can be quantized by imposing canonical commutation relations

$$
\left[\alpha_{\mathbf{k}}, \alpha_{\mathbf{q}}\right]=0, \quad\left[\pi_{\mathbf{k}}, \pi_{\mathbf{q}}\right]=0, \quad\left[\alpha_{\mathbf{k}}, \pi_{\mathbf{q}}\right]=i \hbar \delta_{\mathbf{k}, \mathbf{q}}
$$

on coordinates $\alpha_{\mathbf{k}}$ and canonically conjugate momenta $\pi_{\mathbf{k}}$. In analogy to the one-dimensional harmonic oscillator, we define photon creation and annihilation operators

$$
a_{\mathbf{k}}=\sqrt{\frac{\epsilon_{0} \omega_{\mathbf{k}}}{2 \hbar}}\left(\alpha_{\mathbf{k}}+\frac{i}{\epsilon_{0} \omega_{\mathbf{k}}} \pi_{-\mathbf{k}}\right), \quad a_{\mathbf{k}}^{\dagger}=\sqrt{\frac{\epsilon_{0} \omega_{\mathbf{k}}}{2 \hbar}}\left(\alpha_{-\mathbf{k}}-\frac{i}{\epsilon_{0} \omega_{\mathbf{k}}} \pi_{\mathbf{k}}\right)
$$

Show that the $a_{\mathbf{k}}, a_{\mathbf{k}}^{\dagger}$ obey the commutation relations of harmonic oscillator ladder operators, and express the Hamiltonian in terms of the $a_{\mathbf{k}}, a_{\mathbf{k}}^{\dagger}$.

