The algebraic structure of morphosyntactic features

Sebastian Bank sebastian.bank@uni-leipzig.de

> Department of Linguistics University of Leipzig

Features in Phonology, Morphology, Syntax and Semantics University of Tromsø/CASTL Oktober 31–November 1, 2013

Background: Features in morphological subanalysis

Present and past tense forms of German spielen 'to play'

	SG	$_{\rm PL}$		SG	$_{\rm PL}$
1	spiel- e	spiel- (e)n	1	spiel- te	spiel- te-n
2	spiel- s-t	spiel- t	2	spiel- te-s-t	spiel- te-t
3	spiel- t	spiel- (e)n	3	spiel- te	spiel- te-n
	PRESENT			PAST	ſ

Some underspecified marker hypotheses

$$/-n/ \leftrightarrow [-2 +p1] /-t/ \leftrightarrow [-1]$$

well-formed feature specification = natural class \rightarrow systematic syncretism

Some feature decomposition for pronouns

	1	12	2	3
\mathbf{SG}	+1-2-3-pl		-1+2-3-pl	-1-2+3-pl
$_{\rm PL}$	+1-2-3+pl	+1+2-3+pl	-1+2-3+pl	-1-2+3+pl

Introduction

Observation: Two possible kinds of feature algebra

Feature specifications in morphological grammar are...

nothing but sets of symbols		representations for sets of things
$[+3] \neq [-1 - 2 + 3] \neq [-1 - 2]$		[+3] = [-1-2+3] = [-1-2]
[−1] ¢ [+3]		[−1] ⊏ [+3]
$[+1+p1] \sqcap [+3+p1] = [+p1]$	vs.	[+1+pl] □ [+3+pl] = [-2+pl]
[-1] \sqcup [-3] = [-1 -3]		$[-1] \sqcup [-3] = [-1 + 2 - 3]$
$[+1] \sqcup [-1] \neq [+2] \sqcup [-2]$		$[+1] \sqcup [-1] = \bot = [+2] \sqcup [-2]$
'autonomy'		'extensionalism'

Claim of this talk

Autonomy of feature specification algebra undermines the **restrictiveness** and challenges the **learnability** of morphological grammar.

Feature Notations in Morphological Grammar

Two flavors of feature notations

Given a set of paradigm cells (utterances, contexts)
e.g.
{ 1SG, 1PL, 2SG, 2PL, 3SG.MASC, 3SG.FEM, 3SG.NEUT, 3PL }
or
{ 1SG, 1PL.EXCL, 1PL.INCL 2SG, 2PL, 3SG, 3PL }
Morphosyntactic feature specifications

Give formal representation for the meaning of each individual paradigm cell. Define which sets of paradigm cells correspond to more general meanings.

Feature-value pairs (Paradigm Function Morphology, Network Morphology) {PER:1, NUM:sg}, ... {PER:3, NUM:sg, GEN:neut}, ... {PER:3, NUM:pl}

Privative/binary features (Amorphous Morphology, Distributed Morphology) [+1 -2 -pl], ... [-1 -2 -pl neut], ... [-1 -2 +pl]

Feature-value pairs

Features as orthogonal categories of mutually exclusive values

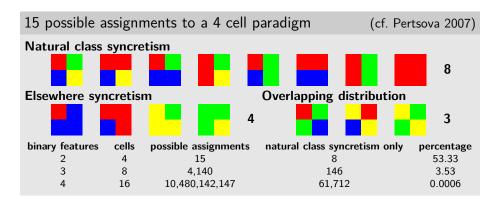
PER: 1, 2, 3 INCL: yes, no NUM: sg, pl GEN: masc, fem, neut

Cooccurrence restrictions

(as used by Stump 2001)

(as used by Corbett / Fraser 1993)

 $\{ \text{PER:1} \} \subseteq X \lor \{ \text{PER:2} \} \subseteq X \to \{ \text{GEN:}\alpha \} \notin X \\ \{ \text{PER:2} \} \subseteq X \to \{ \text{INCL:} \text{yes} \} \subseteq X \\ \{ \text{PER:1, INCL:} \text{yes} \} \subseteq X \to \{ \text{NUM:} \text{pl} \} \subseteq X \\ \{ \text{PER:1, NUM:} \text{sg} \} \subseteq X \lor \{ \text{PER:} 3 \} \subseteq X \to \{ \text{INCL:} \text{no} \} \subseteq X$


Ordered attribute paths in DATR

TNS < PER < NUM <past 1 sg>, <present 3>, ...

4 / 24

Feature Notations in Morphological Grammar Natural class syncretism

Natural classes: syncretism vs. accidental homophony

Features and their possible combinations

- restrict the sets of paradigm cells that can be part of systematic syncretism
- account for the fact that natural class syncretism is more frequent than expected if learners indistinctively internalized random form-identities

Privative/binary features

Feature decompo	sition (as used	by Anderson 1992;	Halle / Marantz 1993)
1.EXCL = [+1-2]	SG = [-pl]	MASC = [masc]	MASC = [+m-f]
1.INCL = [+1+2]	PL = [+pl]	$_{\mathrm{FEM}} = [\texttt{fem}]$	FEM $= [-m+f]$
2 = [-1+2]		$_{\rm NEUT} = [{\tt neut}]$	NEUT = [-m - f]
3 = [-1 - 2]			

Feature combinations

	sg		pl	
1	$1 \mathrm{SG}$	[+1-2-pl]	1pl.excl	[+1-2+pl]
12			1pl.incl	[+1+2+pl]
2	2SG	[-1+2-pl]	2 PL	[-1+2+pl]
3	3SG	[-1+2-pl] [-1-2-pl]	3PL	[-1-2+pl]

5 / 24

Formal Concept Analysis

Formal Concept Analysis

Practical application of **order** and **lattice** theory (Birkhoff 1940) introduced by Wille (1982), elaborated in Gantner & Wille (1999).

Rests upon a Galois connection between two sets: a **set of objects** to describe and a **set of attributes** which each object either has or not (boolean flags).

Basic elements of Formal Concept Analysis (FCA)

The formal context $\langle \mathcal{O}, \mathcal{A}, \mathcal{R} \rangle$

defines a relation between objects and attributes.

The derivation operator '/'

yields common attributes for objects and common objects for attributes. The concept lattice $L(\mathcal{O}, \mathcal{A}, \mathcal{R})$

defines the **relations** and **operations** on objects-attributes pairs.

Provides precise definitions, terminology, and **graphical representations** for the way feature notations are used (mostly implicitly) in linguistics.

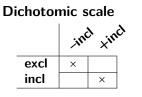
Has many more practical applications, algorithms, software tools, etc.,

see http://www.upriss.org.uk/fca/fca.html

Context defines the relation between objects and attributes

Drop feature/value distinction: translate all values into privative features

	×	>	×r	r	׳	3	×s	e ×b
1s	×			×		×	×	
1pe	×			×		×		×
1pi	×		×			×		×
2s		×	×			×	×	
2р		×	×			×		×
1pi 2s 2p 3s		×		×	×		×	
Зр		×		×	×			×


$\mathcal{O} = \{ \text{ 1s, 1pe, 1pi, 2s, 2p, 3s, 3p} \}$	
$\mathcal{A} = \{ +1, -1, +2, -2, +3, -3, +sg, +pl \}$	à
$\mathcal{R} \subseteq \mathcal{O} \times \mathcal{A} = \{ \langle \text{ 1s, +1 } \rangle, \langle \text{ 1s, -2 } \rangle, \dots \langle \text{ 3p, +pl } \rangle \}$	

objects attributes relation 8/24

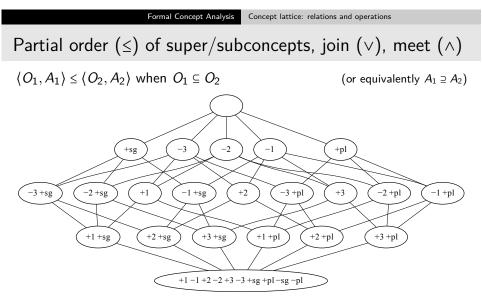
10 / 24

Formal Concept Analysis Formal context: defining a feature system									
From the prime (/) o	pera	ator	to f	form	al c	onc	epts	
	Common attributes O' of $O \subseteq \mathcal{O} := \{a \in \mathcal{A} \mid \forall o \in O : \langle o, a \rangle \in \mathcal{R}\}$ Common objects A' of $A \subseteq \mathcal{A} := \{o \in \mathcal{O} \mid \forall a \in A : \langle o, a \rangle \in \mathcal{R}\}$								
Tornal concept							, 	\ د ما	extent, intent)
	×`	>	×	, Jr	×'	<i>?</i> >	×ో	e ×b	
1s	×			×		×	×		
1р	×			×		×		×	
2s		×	×			×	×		
2р		×	×			×		×	
3s		×		×	×		×		
Зр		×		×	×			×	
$\langle O'', O' \rangle$ or $\langle A', A'' \rangle$									
$(\{\}, \{+1, -1, +2, -2, +3, -3, +sg, +pl\})$ infimum \perp									
$(\{1, \{1, 1, -2, -3, +sg\})$ atom									
$(\{ 1s, 2s \}, \{ -3, +sg \})$									
$\{\{1s, 1p, 2s, 2p\}, \{$, ,							coatom
$(\{ 1s, 1p, 2s, 2p, 3s, 3p \}, \{\})$ supremum \top									

Conceptual scaling: contexts for many-valued attributes

Nominal scale

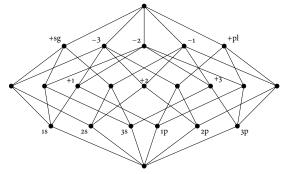
3.neut


Ordinal scale

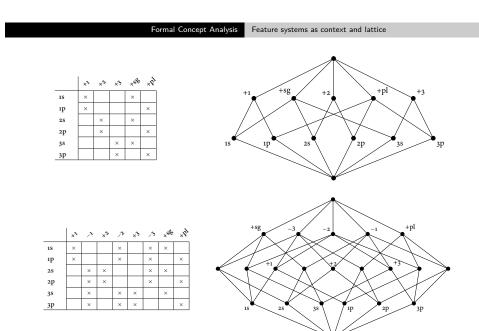
	×	××	××××
positive	×		
comparative	×	×	
superlative	×	×	×

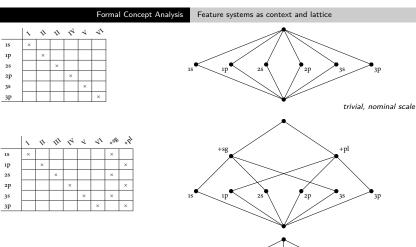
Biordinal scale x^X x x x x very high x x

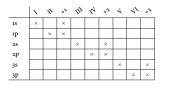
very high	×	×		
high		×		
ow			×	
very low			×	×

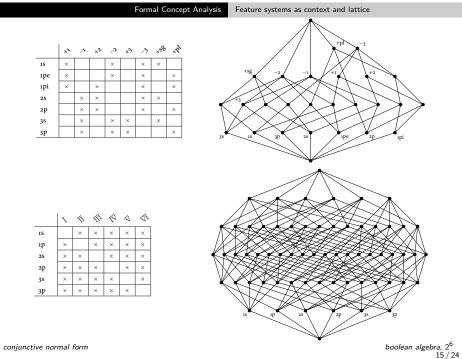

×

 $\begin{array}{l} \bot < \langle \{1S\}, \{\texttt{+1}, \texttt{-2}, \texttt{-3}, \texttt{+sg}\} \rangle < \langle \{1S, 2S\}, \{\texttt{-3}, \texttt{+sg}\} \rangle < \langle \{1S, 1P, 2S, 2P\}, \{\texttt{-3}\} \rangle < \intercal \\ \langle \{1P\}, \{\texttt{+1}, \texttt{-2}, \texttt{-3}, \texttt{+p1}\} \rangle \lor \langle \{3P\}, \{\texttt{-1}, \texttt{-2}, \texttt{+3}, \texttt{+p1}\} \rangle = \langle \{1P, 3P\}, \{\texttt{-2}, \texttt{+p1}\} \rangle \\ \langle \{2S, 2P, 3S, 3P\}, \{\texttt{-1}\} \rangle \land \langle \{1S, 1P, 2S, 2P\}, \{\texttt{-3}\} \rangle = \langle \{2S, 2P\}, \{\texttt{-1}, \texttt{+2}, \texttt{-3}\} \rangle \\ \begin{array}{l} \\ \\ \\ \\ \end{array} \right.$


Formal Concept Analysis Concept lattice: relations and operations


Concept lattice, object concepts, attribute concepts




Relations and operations

$[\texttt{+1}] \lor [\texttt{-1}] = \top \qquad [\texttt{+sg}] \lor [\texttt{+pl}] = \top$	tautology
$[+1] \land [-1] = \bot$ $[+1] \land [+2] = \bot$	contradiction
$[+1] < [-3] \Leftrightarrow [+1] \land [-3] = [+1] \Leftrightarrow [+1] \lor [-3] = [-3]$	implication
$[-1] \land [-3] \neq \bot$ and $[-1]' \cup [-3]' = \top'$	subcontrary
$[+1+sg] \vee [+2+p1] = [-3] \vee \{[+1+sg], [+2+sg], [+2+p1]\} = [-3]$	intersection
$[+1] \land [+sg] = [+1+sg] \land \{[-2], [-3], [+sg]\} = [+1+sg]$	unification
	12 / 24

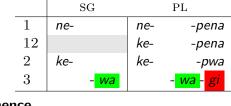
14 / 24

Feature Algebra in Morphological Analysis

Syncretism, underspecification, and insertion competition

Present and past tense forms of English 'to be' \mathbf{SG} \mathbf{SG} PLPL1 1 am are was were $\mathbf{2}$ $\mathbf{2}$ were were are are 3 3 is are was were PAST PRESENT Fully specified Elsewhere syncretism Natural class syncretism was \leftrightarrow [-2-plpst] $am \leftrightarrow [+1 + sg prs]$ were \leftrightarrow [pst] $is \leftrightarrow [+3 + sg prs]$ are \leftrightarrow [prs] Insertion with Paninian blocking (a.k.a. subset principle, elsewhere principle) Insert the **most specific** marker(s) whose meaning **subsume** the paradigm cell meaning. **Insertion of** was \leftrightarrow [-2-plpst] $[-2-\operatorname{pl} \operatorname{pst}] \ge [+1-\operatorname{pl} \operatorname{pst}] \to \checkmark, \qquad [-2-\operatorname{pl} \operatorname{pst}] \not\ge [+2-\operatorname{pl} \operatorname{pst}] \to \checkmark, \qquad [-2-\operatorname{pl} \operatorname{pst}] \ge [+3-\operatorname{pl} \operatorname{pst}] \to \checkmark, \ldots$ **Insertion of** were \leftrightarrow [pst] were \leftrightarrow [pst] \geq was \leftrightarrow [-2-plpst] \geq [+1-plpst] \rightarrow were \leftrightarrow [pst] \geq [+1+plpst] \rightarrow Were,

Feature Algebra in Morphological Analysis Blurring extended exponence


Masked extended exponence with autonomous features

Present tense verbal agre	ement affixes of Ge	erman (Müller 2006)		
sg 1 [+1-2-p1] -e 2 [-1+2-p1] 3 [-1-2-p1] -t	pl 1 [4/1 -2 +p1] -n 2 [-1+2+p1] -t 3 [4/1 -2+p1] -n	$/n/ \leftrightarrow [-2 + p1]$ $/t/ \leftrightarrow [-1]$		
Does not interpret t -insertion in 2SG as extended exponence (but might). Requires that $t \leftrightarrow [-1]$ is not a superconcept of $s \leftrightarrow [+2-p1]$. <i>autonomy</i> But this requires that some paradigm cell is +2 and not -1. <i>extensionalism</i>				
Extensionalist a	analysis	$\overline{}^{T}$		
Extended exponence $t \leftrightarrow [-1] \ge s \leftrightarrow [+2-p]$]≥[+2-pl] / <mark>s</mark>t	{2s, 2p, 3s, 3p},[-1] {1s, 2s, 3s},[-p1]		
Contextual features solution $/ [-p1] / [-1+2]$	on	{2s, 2P}.[-1+2] {2s, 3s}.[-1-p1]		
predicts functional pressure to cha	nge - <mark>s - t</mark> into - <mark>s</mark>	{2s},[-1+2-p1]		

Feature Algebra in Morphological Analysis

When markers resist blocking: extended exponence

Agreement affixes of Fox animate intransitive verbs (Bloomfield 1927)

Extended exponence

 $-\mathbf{wa} \leftrightarrow [+3] \ge -\mathbf{gi} \leftrightarrow [+3+p1] \ge [+3+p1] \not\Rightarrow -\mathbf{wa} -\mathbf{gi}$

Markedness of extended exponence hypothesis

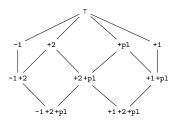
The utterance of a subsuming marker does not contribute **information**. It involves **additional formal machinery** (feature copying, rule blocks, contextual features, marker sensitivity, enrichment) and correspondingly is **harder to learn**.

Contextual feature solution - gi ↔ [+p1] / [+3]

(insertion as feature discharge, Noyer 1992) discharged features / non-discharged features 17/24

Feature Algebra in Morphological Analysis Blurring extended exponence

No masked extended exponence with extensionalism



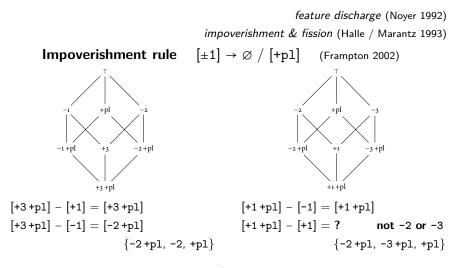
 $[+2] \neq [-1+2]$ only if there is a [+1+2] cell

[+2-p1] ≠ [-1+2-p1] **only if** there is a [+1+2-p1] cell However, such an inclusive/augmented reanalysis gives:

 a. *Wir spiel-s. we play-1INCL.MIN
 b. *Wir spiel-e.

we play-1incl.aug

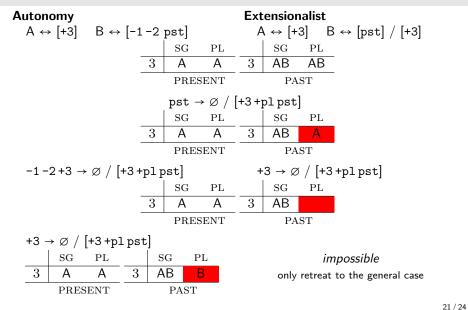
Feature Algebra in Morphological Analysis Restrictiveness and learnability


Why to avoid autonomous feature algebra?

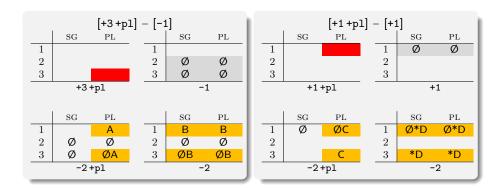
- cannot replace extended exponence machinery altogether without undermining natural class restrictivity by adding features
- introduces superficially equivalent options (analytical **ambiguity**) of exploiting feature autonomy vs. using additional machinery
- results in less specific predictions making analyses harder to test
- why prefer a less restrictive theory when a more restrictive version has not yet been falsified?
- if the choice between [+2] and [-1+2] is only indirectly observable, how can it be learned?
- is there independent evidence for such 'morphomic' features other than the **distributional effects** they have?

20 / 24

Feature Algebra in Morphological Analysis Feature set subtraction


Feature set subtraction in morphological operations

Impoverishment \Leftrightarrow feature discharging **Ø**-insertion


Feature Algebra in Morphological Analysis Blurring retreat to the general case

Impoverishment with or without autonomous features

Feature Algebra in Morphological Analysis Feature set subtraction

Subtraction as Ø-insertion without autonomous features

Regarding subtraction as insertion without form-change

- makes various (possibly overly powerful) formalisms more restricted
- allows for a consistent information-based interpretation

(Trommer 1999, 2003)

Summary

Conclusion

- if features are more than abbreviations for observable distributional facts, even simple formalisms can acquire considerable **power**
- at least in some cases it is undesirable to use this extra power not before there is evidence that it is really needed
- Formal Concept Analysis provides the terminology and the tools to spot and disassemble such 'feature tricks'
- learnability might raise fundamental objections against them
- for the most part feature autonomy can be avoided by always using the most specific notational variant for representing feature sets

- Anderson, S. R. (1992). A-Morphous Morphology. Cambridge: Cambridge University Press.
- Birkhoff, Garret. Lattice Theory, first edition. American Mathematical Society Colloquium Publications 25, Providence, R.I.: American Mathematical Society.
- Bloomfield, Leonard (1927). Notes on the Fox Language. International Journal of American Linguistics 4(2): 181-219.
- Corbett, G. G. & Fraser, N. M. (1993). Network Morphology: a DATR account of Russian nominal inflection. Journal of Linguistics, 29:113–142.
- Frampton, J. (2002). Syncretism, impoverishment, and the structure of person features. In CLS 38, Papers from the 2002 Chicago Linguistic Society Meeting, pages 207–222.
- Ganter, B. & Wille, R. (1999). Formal Concept Analysis: Mathematical Foundations. Springer, Berlin.
- Halle, M. & Marantz, A. (1993). Distributed Morphology and the pieces of inflection. In Hale, K. & Keyser, S. J., editors, *The View from Building 20*, pages 111–176.Cambridge MA: MIT Press.
- Müller, G. (2006). Subanalyse verbaler Flexionsmarker. In Breindl, E., Gunkel, L., & Strecker, B., editors, Grammatische Untersuchungen, Analysen und Reflexionen. Festschrift für Gisela Zifonun, pages 183–203. Narr, Tübingen.
- Noyer, R. R. (1992). Features, Positions and Affixes in Autonomous Morphological Structure. PhD thesis, MIT.
- Pertsova, K. (2007). Learning Form-Meaning Mappings in Presence of Homonymy. PhD thesis, UCLA.
- Stump, G. T. (2001). Inflectional Morphology. Cambridge: Cambridge University Press.
- Trommer, J. (1999). Morphology consuming syntax' resources: generation and parsing in a minimalist version of Distributed Morphology. Proceedings of the ESSLI Workshop on Resource Logics and Minimalist Grammars, Utrecht, August 1999.
- Trommer, J. (2003). Feature (Non-)Insertion in a Minimalist Approach to Spellout. In *CLS39*, Papers from the 2003 Chicago Linguistic Society Meeting.
- Wille, R. (1982). Restructuring lattice theory: an approach based on hierarchies of concepts. In Rival, I., editor, Ordered sets, 445–470, Dordrecht–Boston. Reidel

24 / 24