The algebraic structure of morphosyntactic features

Sebastian Bank
sebastian.bank@uni-leipzig.de

Department of Linguistics
University of Leipzig
Features in Phonology, Morphology, Syntax and Semantics University of Troms $\varnothing /$ CASTL
Oktober 31-November 1, 2013

Introductio

Observation: Two possible kinds of feature algebra
Feature specifications in morphological grammar are..

$$
\begin{gathered}
\text { nothing but sets of symbols } \\
{\left[\begin{array}{c}
{[+3] \neq[-1-2+3] \neq[-1-2]} \\
{[-1] \neq[+3]} \\
{[+1+\mathrm{pl}]} \\
\square[+3+\mathrm{pl}]=[\mathrm{pl}] \\
{[-1] \sqcup[-3]=[-1-3]} \\
{[+1] \sqcup[-1] \neq[+2] \sqcup[-2]}
\end{array}\right.}
\end{gathered}
$$

$$
\begin{gathered}
\text { representations for sets of things } \\
{[+3]=[-1-2+3]=[-1-2]} \\
{[-1] \sqsubset[+3]} \\
{[+1+\mathrm{pl}]} \\
\square[+3+\mathrm{pl}]=[-2+\mathrm{pl}] \\
{[-1] \sqcup[-3]=[-1+2-3]} \\
{[+1] \sqcup[-1]=\perp=[+2] \sqcup[-2]}
\end{gathered}
$$

vs.
'extensionalism'

Claim of this talk

Autonomy of feature specification algebra undermines the restrictiveness and challenges the learnability of morphological grammar.

Background: Features in morphological subanalysis

Present and past tense forms of German spielen 'to play'

	SG	PL		SG	PL
1	spiel-e	spiel-(e)n	1	spiel-te	spiel-te-n
2	spiel-s-t	spiel-t	2	spiel-te-s-t	spiel-te-t
3	spiel-t	spiel-(e)n	3	spiel-te	spiel-te-n

Some underspecified marker hypotheses

$$
/-\mathrm{n} / \leftrightarrow[-2+\mathrm{pl}] \quad /-\mathrm{t} / \leftrightarrow[-1]
$$

well-formed feature specification $=$ natural class \rightarrow systematic syncretism

Some feature decomposition for pronouns

	1	12	2	3
SG	$+1-2-3-\mathrm{pl}$		$-1+2-3-\mathrm{pl}$	$-1-2+3-\mathrm{pl}$
PL	$+1-2-3+\mathrm{pl}$	$+1+2-3+\mathrm{pl}$	$-1+2-3+\mathrm{pl}$	$-1-2+3+\mathrm{pl}$

Feature Notations in Morphological Grammar

Two flavors of feature notations

Given a set of paradigm cells (utterances, contexts)
e.g.
\{ 1SG, 1PL, 2SG, 2PL, 3SG.mASC, 3SG.FEM, 3SG.NEUT, 3PL \}
or
\{1SG, 1PL.EXCL, 1PL.INCL 2SG, 2PL, 3SG, 3PL \}

Morphosyntactic feature specifications

Give formal representation for the meaning of each individual paradigm cell. Define which sets of paradigm cells correspond to more general meanings.

Feature-value pairs (Paradigm Function Morphology, Network Morphology) \{PER:1, NUM:sg\}, ... \{PER:3, NUM:sg, GEN:neut\}, ... \{PER:3, NUM:pl\}

Privative/binary features (Amorphous Morphology, Distributed Morphology) $\left[\begin{array}{lll} & -2 & -p l\end{array}\right], \ldots\left[\begin{array}{lll}-1 & -2 & -p l \\ n e u t\end{array}\right], \ldots\left[\begin{array}{ll}-1 & -2\end{array}+p l\right]$

Feature-value pairs

Features as orthogonal categories of mutually exclusive values
PER: 1, 2, 3 INCL: yes, no
NUM: sg, pl
GEN: masc, fem, neut

Cooccurrence restrictions

(as used by Stump 2001)
$\{$ PER: 1$\} \sqsubseteq X \vee\{$ PER: 2$\} \sqsubseteq X \rightarrow\{$ GEN: $\alpha\} \nsubseteq X$
$\{$ PER:2 $\} \sqsubseteq X \rightarrow\{$ InCL:yes $\} \sqsubseteq X$
$\{$ PER:1, INCL:yes $\} \sqsubseteq X \rightarrow\{$ NUM:pl $\} \sqsubseteq X$
$\{$ PER:1, NUM:sg $\} \sqsubseteq X \vee\{$ PER:3 $\} \sqsubseteq X \rightarrow\{$ INCL:no $\} \sqsubseteq X$
Ordered attribute paths in DATR
(as used by Corbett / Fraser 1993)
TNS < PER < NUM
<past 1 sg >, <present 3>,...

Feature Notations in Morphological Grammar

Natural class syncretism
Natural classes: syncretism vs. accidental homophony

Features and their possible combinations

- restrict the sets of paradigm cells that can be part of systematic syncretism
- account for the fact that natural class syncretism is more frequent than expected if learners indistinctively internalized random form-identities

Feature combinations

	$\mathbf{s g}$		$\mathbf{p l}$	
$\mathbf{1}$	1SG	$[+1-2-\mathrm{pl}]$	1PL.EXCL	$[+1-2+\mathrm{pl}]$
$\mathbf{1 2}$			1PL.INCL	$[+1+2+\mathrm{pl}]$
$\mathbf{2}$	2SG	$[-1+2-\mathrm{pl}]$	2PL	$[-1+2+\mathrm{pl}]$
$\mathbf{3}$	3 SG	$[-1-2-\mathrm{pl}]$	3PL	$[-1-2+\mathrm{pl}]$

Feature Notations in Morphological Grammar Privative/binary features
Privative/binary features

$$
\begin{aligned}
& \text { Feature decomposition } \\
& \left.\begin{array}{llll}
\text { 1.EXCL } & =[+1-2] & \mathrm{SG}=[-\mathrm{pl}] & \mathrm{MASC}=[\mathrm{masc}] \\
\text { 1. } \mathrm{INCL} & =[+1+2] & \mathrm{PL}=[+\mathrm{pl}] & \text { FEM }=[\mathrm{fem}] \\
2 & =[-1+2] & & \text { FEM }=[-\mathrm{m}+\mathrm{f}] \\
3 & & & \\
3 & =[-1-2] & &
\end{array}\right]
\end{aligned}
$$

Formal Concept Analysis

Practical application of order and lattice theory (Birkhoff 1940) introduced by Wille (1982), elaborated in Gantner \& Wille (1999).
Rests upon a Galois connection between two sets: a set of objects to describe and a set of attributes which each object either has or not (boolean flags).

Basic elements of Formal Concept Analysis (FCA)

The formal context $\langle\mathcal{O}, \mathcal{A}, \mathcal{R}\rangle$
defines a relation between objects and attributes.
The derivation operator ' r '
yields common attributes for objects and common objects for attributes.
The concept lattice $L(\mathcal{O}, \mathcal{A}, \mathcal{R})$
defines the relations and operations on objects-attributes pairs.
Provides precise definitions, terminology, and graphical representations for the way feature notations are used (mostly implicitly) in linguistics.
Has many more practical applications, algorithms, software tools, etc.,
see http://www.upriss.org.uk/fca/fca.html

Context defines the relation between objects and attributes

Drop feature/value distinction: translate all values into privative features

	$x^{2} \geqslant x^{2}$,2 $x^{3} \geqslant 3 x^{50} x^{2}$							
1s	\times			\times		\times	\times	
1pe	\times			\times		\times		
1pi	\times		\times			\times		
2s		\times	\times			\times	\times	
2p		\times	\times			\times		x
3s		\times		\times	\times		\times	
3p		\times		\times	\times			\times

$\mathcal{O}=\{1 \mathrm{~s}, 1 \mathrm{PE}, 1 \mathrm{PI}, 2 \mathrm{~s}, 2 \mathrm{P}, 3 \mathrm{~s}, 3 \mathrm{P}\}$
objects
$\mathcal{A}=\{+1,-1,+2,-2,+3,-3,+\mathrm{sg},+\mathrm{pl}\}$
attributes
relation

Dichotomic scale

Ordinal scale

	$\times x^{x}$		
	x^{x}		
positive	\times		
comparative	x	\times	
superlative	x	x	x

Nominal scale

Biordinal scale

		\times		
very high	\times	\times		
high		\times		
low			\times	
very low			\times	

From the prime (I) operator to formal concepts
Common attributes O^{\prime} of $O \subseteq \mathcal{O}:=\{a \in \mathcal{A} \mid \forall o \in O:\langle o, a\rangle \in \mathcal{R}\}$
Common objects $\quad A^{\prime}$ of $A \subseteq \mathcal{A}:=\{o \in \mathcal{O} \mid \forall a \in A:\langle o, a\rangle \in \mathcal{R}\}$
Formal concept $\quad\langle O, A\rangle$ with $O^{\prime}=A$ and $A^{\prime}=O \quad$ <extent, intent〉

		,						${ }^{p}$
1s	\times			\times		\times	\times	
1p	\times			\times		\times		\times
2s		\times	\times			\times	\times	
2p		\times	\times			\times		\times
3s		\times		\times	\times		\times	
3p		\times		\times	\times			\times
$\left\langle O^{\prime \prime}, O^{\prime}\right\rangle$ or $\left\langle A^{\prime}, A^{\prime \prime}\right\rangle$								

[^0]Partial order (\leq) of super/subconcepts, join (\vee), meet (\wedge)
$\left\langle O_{1}, A_{1}\right\rangle \leq\left\langle O_{2}, A_{2}\right\rangle$ when $O_{1} \subseteq O_{2}$
(or equivalently $A_{1} \supseteq A_{2}$)

$$
\perp\langle\langle\{1 \mathrm{~s}\},\{+1,-2,-3,+\mathrm{sg}\}\rangle<\langle\{1 \mathrm{~s}, 2 \mathrm{~s}\},\{-3,+\mathrm{sg}\}\rangle<\langle\{1 \mathrm{~s}, 1 \mathrm{P}, 2 \mathrm{~s}, 2 \mathrm{P}\},\{-3\}\rangle<\mathrm{T}
$$

$$
\langle\{1 \mathrm{P}\},\{+1,-2,-3,+\mathrm{pl}\}\rangle \vee\langle\{3 \mathrm{P}\},\{-1,-2,+3,+\mathrm{pl}\}\rangle=\langle\{1 \mathrm{P}, 3 \mathrm{P}\},\{-2,+\mathrm{pl}\}\rangle
$$

$$
\langle\{2 \mathrm{~s}, 2 \mathrm{P}, 3 \mathrm{~s}, 3 \mathrm{P}\},\{-1\}\rangle \wedge\langle\{1 \mathrm{~s}, 1 \mathrm{P}, 2 \mathrm{~s}, 2 \mathrm{P}\},\{-3\}\rangle=\langle\{2 \mathrm{~s}, 2 \mathrm{P}\},\{-1,+2,-3\}\rangle_{11 / 24}
$$

Concept lattice, object concepts, attribute concepts

Feature systems as context and lattice

tautology

Relations and operations

$[+1] \vee[-1]=T$	$[+\mathrm{sg}] \vee[+\mathrm{pl}]=\mathrm{T}$	
$[+1] \wedge[-1]=\perp$	$[+1] \wedge[+2]=\perp$	tautology
$[+1]<[-3] \quad \Leftrightarrow$	$[+1] \wedge[-3]=[+1]$	\Leftrightarrow
$[-1] \wedge[-3] \neq \perp$	and $\quad[-1]^{\prime} \cup[-3]^{\prime}=\mathrm{T}^{\prime}$	contradiction
$[+1+\mathrm{sg}] \vee[+2+\mathrm{pl}]=[-3]$	$\vee\{[+1+\mathrm{sg}],[+2+\mathrm{sg}],[+2+\mathrm{pl}]\}=[-3]$	intersection
$[+1] \wedge[+\mathrm{sg}]=[+1+\mathrm{sg}]$	$\wedge\{[-2],[-3],[+\mathrm{sg}]\}=[+1+\mathrm{sg}]$	implication
	indication	

Syncretism, underspecification, and insertion competition

Present and past tense forms of English 'to be'

	SG	PL
1	am	are
2	are	are
3	is	are
PRESENT		

	SG	PL
1	was	were
2	were	were
3	was	were
PAST		

Fully specified

$$
\begin{aligned}
& \text { am } \leftrightarrow[+1+\text { sg prs } \\
& \text { is } \leftrightarrow[+3+\text { sg prs }]
\end{aligned}
$$

$$
\text { is } \leftrightarrow \text { [+3 +sg prs] }
$$

Natural class syncretism	Elsewhere sync
was $\leftrightarrow[-2-\mathrm{pl} \mathrm{pst}]$	were $\leftrightarrow[\mathrm{pst}]$
	are $\leftrightarrow[\mathrm{prs}]$

(a.k.a. subset principle, elsewhere principle)

Insert the most specific marker(s) whose meaning subsume the paradigm cell meaning.

```
Insertion of was }\leftrightarrow[-2-pl pst
    [-2-pl pst] \geq[+1-pl pst] -> , [-2-pl pst]\not\exists[+2-pl pst] ->X, [-2-pl pst] \geq[+3-pl pst] }->\boldsymbol{~
Insertion of were }\leftrightarrow[\textrm{pst}
    were }\leftrightarrow[pst]\geq\mathrm{ was }\leftrightarrow[-2-\textrm{pl pst]}\geq[+1-\textrm{pl pst}]->\mathrm{ was, were }\leftrightarrow[pst]\geq[+1+\textrm{pl pst}]->\mathrm{ were, ... 
```


Feature Algebra in Morphological Analys:

Blurring extended exponence
Masked extended exponence with autonomous features

Present tense verbal agreement affixes of German

(Müller 2006)

sg		pl			$[\pm 1] \rightarrow \varnothing /[-2+\mathrm{pl}]$
1 [+1-2-pl]	-e	1	[$41-2+\mathrm{pl}]$	-n	$/ \mathrm{s} / \leftrightarrow[+2-\mathrm{pl}]$
$2[-1+2-\mathrm{pl}]$	- t	2	$[-1+2+\mathrm{pl}]$	- t	$/ \mathrm{n} / \leftrightarrow[-2+\mathrm{pl}]$
$3[-1-2-\mathrm{pl}]$	-t	3	[H 1 - $2+\mathrm{pl}$]	-n	/t/ \leftrightarrow [${ }^{\text {/ }}$ / \leftrightarrow []

Does not interpret t-insertion in 2SG as extended exponence (but might). Requires that $t \leftrightarrow[-1]$ is not a superconcept of $s \leftrightarrow[+2-\mathrm{pl}]$. autonomy But this requires that some paradigm cell is +2 and not -1 . extensionalism

Extensionalist analysis

Extended exponence

$$
t \leftrightarrow[-1] \geq s \leftrightarrow[+2-\mathrm{pl}] \geq[+2-\mathrm{pl}] \nmid \mathrm{s} t
$$

Contextual features solution
$/ \mathrm{s} / \leftrightarrow[-\mathrm{pl}] /[-1+2]$
predicts functional pressure to changeinto

When markers resist blocking: extended exponence
Agreement affixes of Fox animate intransitive verbs (Bloomfield 1927)

	SG		PL	
1	ne-	ne-	-pena	
12			ke-	-pena
2	ke-		ke-	-pwa
3		$-w a$		$-w a-g i$

Extended exponence

- wa $\leftrightarrow[+3] \geq-g i \leftrightarrow[+3+p l] \geq[+3+p l] \nrightarrow-w a-g i$

Markedness of extended exponence hypothesis

The utterance of a subsuming marker does not contribute information.
It involves additional formal machinery (feature copying, rule blocks, contextua features, marker sensitivity, enrichment) and correspondingly is harder to learn

Contextual feature solution
$\mathrm{gi} \leftrightarrow[+\mathrm{pl}] /[+3]$
(insertion as feature discharge, Noyer 1992) discharged features / non-discharged features

Feature Algebra in Morphological Analysis

Blurring extended exponence
No masked extended exponence with extensionalism

sg		pl			$[\pm 1] \rightarrow \varnothing /[-2+p l]$
$1[+1-2-\mathrm{pl}]$	-e	1	[441-2+pl]	-n	$/ \mathrm{s} / \leftrightarrow[+2-\mathrm{pl}]$
	?	12	$[+1+2+p \mathrm{p}]$	*-e	$/ \mathrm{n} / \leftrightarrow[-2+\mathrm{pl}]$
2 [-1+2-pl]	$-s-t$	2	$[-1+2+\mathrm{pl}]$	-t	$/ \mathrm{t} / \leftrightarrow[-1]$
$3[-1-2-\mathrm{pl}]$	-t	3	[$41-2+p \mathbf{l}]$	-n	/e/ $\leftrightarrow[]$

$[+2]=[-1+2]$ only if there is a $[+1+2]$ cell
$[+2-p \mathrm{p}] \neq[-1+2-\mathrm{p}]$ only if there is a $[+1+2-\mathrm{pl}]$ cell However, such an inclusive/augmented reanalysis gives:
(1) a. *Wir spiel-s.
we play-1INCL.MIN
b. *Wir spiel-e
we play-1INCL.AUG

Why to avoid autonomous feature algebra?

- cannot replace extended exponence machinery altogether without undermining natural class restrictivity by adding features
- introduces superficially equivalent options (analytical ambiguity) of exploiting feature autonomy vs. using additional machinery
- results in less specific predictions making analyses harder to test
- why prefer a less restrictive theory when a more restrictive version has not yet been falsified?
- if the choice between [+2] and [-1+2] is only indirectly observable, how can it be learned?
- is there independent evidence for such 'morphomic' features other than the distributional effects they have?

Feature Algebra in Morphological Analysis

Feature set subtraction
Feature set subtraction in morphological operations
impoverishment \& fission (Halle / Marantz 1993)
(Frampton 2002)

Impoverishment \Leftrightarrow feature discharging \emptyset-insertion
(Trommer 1999, 2003)

Impoverishment with or without autonomous features

Autonomy$A \leftrightarrow[+3]$	Extensionalist					
	$B \leftrightarrow[-1-2 \mathrm{pst}]$			A $\leftrightarrow[+3]$		
		SG	PL		SG	PL
	3	A	A	3	AB	AB
		PRESENT		PAST		
		pst $\rightarrow \varnothing /[+3+\mathrm{pl}$ pst]				
		SG	PL		SG	PL
	3	A	A	3	AB	A
		PRE	ENT			
$-1-2+3 \rightarrow \varnothing /[+3+p l p s t]$				$+3 \rightarrow \varnothing /[+3+\mathrm{pl} \mathrm{pst}]$		
		SG	PL		SG	PL
	3	A	A	3	AB	
		PRESENT		PAST		

$+3 \rightarrow \varnothing /[+3+p l p s t]$					
	SG	PL		SG	PL
3	A	A	3	AB	B

impossible
only retreat to the general case

Feature Algebra in Morphological Analysis

Feature set subtraction
Subtraction as \emptyset-insertion without autonomous features

Regarding subtraction as insertion without form-change

- makes various (possibly overly powerful) formalisms more restricted
- allows for a consistent information-based interpretation

Conclusion

- if features are more than abbreviations for observable distributional facts, even simple formalisms can acquire considerable power
- at least in some cases it is undesirable to use this extra power - not before there is evidence that it is really needed
- Formal Concept Analysis provides the terminology and the tools to spot and disassemble such 'feature tricks'
- learnability might raise fundamental objections against them
- for the most part feature autonomy can be avoided by always using the most specific notational variant for representing feature sets

Anderson, S. R. (1992). A-Morphous Morphology. Cambridge: Cambridge University Press.
Birkhoff, Garret. Lattice Theory, first edition. American Mathematical Society Colloquium Publications 25, Providence, R.I. American Mathematical Society
Bloomfield, Leonard (1927). Notes on the Fox Language. International Journal of American Linguistics 4(2): 181-219.
Corbett, G. G. \& Fraser, N. M. (1993). Network Morphology: a DATR account of Russian nominal inflection. Journal of Linguistics, 29:113-142.
Frampton, J. (2002). Syncretism, impoverishment, and the structure of person features. In CLS 38, Papers from the 2002
Chicago Linguistic Society Meeting, pages 207-222.
Ganter, B. \& Wille, R. (1999). Formal Concept Analysis: Mathematical Foundations. Springer, Berlin.
Halle, M. \& Marantz, A. (1993). Distributed Morphology and the pieces of inflection. In Hale, K. \& Keyser, S. J., editors, The View from Building 20, pages 111-176. Cambridge MA: MIT Press.
Müller, G. (2006). Subanalyse verbaler Flexionsmarker. In Breindl, E., Gunkel, L., \& Strecker, B., editors, Grammatische Untersuchungen, Analysen und Reflexionen. Festschrift für Gisela Zifonun, pages 183-203. Narr, Tübingen
Noyer, R. R. (1992). Features, Positions and Affixes in Autonomous Morphological Structure. PhD thesis, MIT
Pertsova, K. (2007). Learning Form-Meaning Mappings in Presence of Homonymy. PhD thesis, UCLA.
Stump, G. T. (2001). Inflectional Morphology. Cambridge: Cambridge University Press.
Trommer, J. (1999). Morphology consuming syntax' resources: generation and parsing in a minimalist version of Distributed Morphology. Proceedings of the ESSLI Workshop on Resource Logics and Minimalist Grammars, Utrecht, August 1999. Trommer, J. (2003). Feature (Non-)Insertion in a Minimalist Approach to Spellout. In CLS39, Papers from the 2003 Chicago Linguistic Society Meeting.
Wille, R. (1982). Restructuring lattice theory: an approach based on hierarchies of concepts. In Rival, I., editor, Ordered sets, 445-470, Dordrecht-Boston. Reidel

[^0]: $\langle\},\{+1,-1,+2,-2,+3,-3,+s g,+p l\}\rangle$
 infimum \perp
 $\langle\{1 \mathrm{~s}\},\{+1,-2,-3,+\mathrm{sg}\}\rangle$
 $\langle\{1 \mathrm{~s}, 2 \mathrm{~s}\},\{-3,+\mathrm{sg}\}\rangle$
 $\langle\{1 \mathrm{~S}, 1 \mathrm{P}, 2 \mathrm{~S}, 2 \mathrm{P}\},\{-3\}\rangle$
 coatom
 $\langle\{1 \mathrm{~S}, 1 \mathrm{P}, 2 \mathrm{~S}, 2 \mathrm{P}, 3 \mathrm{~S}, 3 \mathrm{P}\},\{ \}\rangle$

