Quantum Field Theory of Many-Particle Systems - Problem Set 1

Summer Term 2014

Due Date: Thursday, April 17, 3:15 p.m., tutorial session

Exam: Wednesday, July 16th, 9:00 a.m. SR 113

Internet: You can download this problem set at http://www.uni-leipzig.de/~ stp→ Courses.

1. Field operators

5 Punkte

The operators a_k^{\dagger} and a_k create or annihilate single particle states with momentum k, respectively. They obey the commutation relations $[a_k, a_{k'}]_{\zeta} = 0$, $[a_k, a_{k'}^{\dagger}]_{\zeta} = \delta_{k,k'}$ with $\zeta = 1$ for bosons and $\zeta = -1$ for fermions. The field operator $\Psi(x)$ is defined as the Fourier transform

$$\Psi(x) = \frac{1}{\sqrt{L}} \sum_k a_k \ e^{ikx} \ .$$

Show that $\Psi(x)$ and its Hermitian conjugate $\Psi^{\dagger}(x)$ obey the commutation relations

$$[\Psi(x), \Psi^{\dagger}(y)]_{\zeta} = \delta(x-y) .$$

2. Second Quantization with field operators

10 Punkte

A many-particle state is described by the Hamiltonian

$$H = \sum_{j=1}^{N} -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x_j^2} + V(x_j) + \sum_{i < j} V(x_i - x_j) ,$$

and the wave function $\varphi_{\alpha}(x_1, x_2, ..., x_N)$ is an eigenstate of H with eigenvalue E_{α} . In second quantized notation, the wave function φ_{α} is described by a state vector

$$|\varphi_{\alpha}\rangle = \int dx_1 dx_2 ... dx_N \ \varphi_{\alpha}(x_1, x_2, ..., x_N) \ \Psi^{\dagger}(x_1) \Psi^{\dagger}(x_2) ... \Psi^{\dagger}(x_N) |0\rangle$$

with commutation relations of Ψ , Ψ^{\dagger} as in problem 1 supplemented by the condition that the operator $\Psi(x)$ annihilates the vacuum state $\Psi(x)|0\rangle = 0$. In second quantization, the Hamiltonian reads

$$H_s = \int dx \Psi^{\dagger}(x) \left(-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x_j^2} + V(x_j) \right) \Psi(x) + \frac{1}{2} \int dx dy \Psi^{\dagger}(x) \Psi^{\dagger}(y) V(x-y) \Psi(y) \Psi(x) .$$

Show that

$$H_s|\varphi_{\alpha}\rangle = E_{\alpha}|\varphi_{\alpha}\rangle$$
.