Quantum Field Theory of Many-Particle Systems - Problem Set 2

Summer Term 2014

Due Date: Thursday, April 24, 3:15 p.m., tutorial session

Internet: You can download this problem set at http://www.uni-leipzig.de/~rosenow.

3. Quantization of the Radiation Field

5+5+5 Punkte

In the absence of charges, and in the Coulomb gauge $\nabla \cdot \mathbf{A} = 0$, the electromagnetic field is described by the Lagrangian

$$L = \frac{1}{2} \int_{\Omega} d^3x \left[\epsilon_0 \left(\partial_t \mathbf{A} \right)^2 + \frac{1}{\mu_0} \mathbf{A} \nabla^2 \mathbf{A} \right] .$$

Here, ϵ_0 denotes the vacuum dielectric constant, μ_0 the vacuum permeability, and Ω is a cuboid with extensions L_x , L_y , and L_z . Note that the speed of light is $c = 1/\sqrt{\epsilon_0 \mu_0}$.

- a) Derive the equation of motion for **A** by extremizing the action $S = \int dt L$.
- b) Find eigenfunctions ${\bf A_k}$ and eigenvalues $\omega_{\bf k}^2$ of the equation

$$-\nabla^2 \mathbf{A} = \frac{\omega_{\mathbf{k}}^2}{c^2} \mathbf{A}$$

by using periodic boundary conditions. It may be useful to introduce for each \mathbf{k} a set of orthonormal vectors $\{\xi_{\mathbf{k},1},\xi_{\mathbf{k},2}\}$ which are both perpendicular to \mathbf{k} . The time-dependent solution has then a series expansion

$$\mathbf{A}(\mathbf{x},t) \ = \ \frac{1}{\Omega} \sum_{\mathbf{k},i} \alpha_{\mathbf{k},i}(t) \mathbf{A}_{\mathbf{k},i}(\mathbf{x}) \ .$$

Insert this series expansion into the Lagrangian, and find the momenta

$$\pi_{\mathbf{k},i} = \frac{\partial L}{\partial \alpha_{\mathbf{k},i}^{i}} .$$

canonically conjugate to the coordinates $\alpha_{\mathbf{k},i}$. Use the Legendre transform $H = \sum_{\mathbf{k},i} \pi_{\mathbf{k},i} \dot{\alpha}_{\mathbf{k},i} - L(\pi_{\mathbf{k},i}, \alpha_{\mathbf{k},i})$ to obtain the Hamiltonian.

c) The classical Hamiltonian $H(\{\pi_{\mathbf{k},i},\alpha_{\mathbf{k},i}\})$ can be quantized by imposing canonical commutation relations

$$[\alpha_{\mathbf{k},i},\alpha_{\mathbf{q},j}] = 0, \quad [\pi_{\mathbf{k},i},\pi_{\mathbf{q},j}] = 0, \quad [\alpha_{\mathbf{k},i},\pi_{\mathbf{q},j}] = i\hbar \, \delta_{\mathbf{k},\mathbf{q}}\delta_{i,j}.$$

on coordinates $\alpha_{\mathbf{k},i}$ and canonically conjugate momenta $\pi_{\mathbf{k},j}$. In analogy to the onedimensional harmonic oscillator, we define photon creation and annihilation operators

$$a_{\mathbf{k},j} = \sqrt{\frac{\epsilon_0 \omega_{\mathbf{k}}}{2\hbar}} \left(\alpha_{\mathbf{k},j} + \frac{i}{\epsilon_0 \omega_{\mathbf{k}}} \pi_{-\mathbf{k},j} \right) , \quad a_{\mathbf{k},j}^{\dagger} = \sqrt{\frac{\epsilon_0 \omega_{\mathbf{k}}}{2\hbar}} \left(\alpha_{-\mathbf{k},j} - \frac{i}{\epsilon_0 \omega_{\mathbf{k}}} \pi_{\mathbf{k},j} \right)$$

Show that the $a_{\mathbf{k},j}$, $a_{\mathbf{k},j}^{\dagger}$ obey the commutation relations of harmonic oscillator ladder operators, and express the Hamiltonian in terms of the $a_{\mathbf{k},j}$, $a_{\mathbf{k},j}^{\dagger}$.