Quantum Field Theory of Many-Particle Systems - Problem Set 6

Summer Term 2014

Internet: You can download this problem set at http://www.uni-leipzig.de/~rosenow.

9. Polarization Propagator in one dimension $4+4+4+4$ Punkte

The polarization propagator in one spatial dimension is defined as

$$
\Pi\left(i \omega_{n}, q\right)=2 \int \frac{d k}{2 \pi} T \sum_{\epsilon_{l}} \frac{1}{i \epsilon_{l}+i \omega_{n}-\xi(k+q)} \frac{1}{i \epsilon_{l}-\xi(k)}
$$

where $\xi(k)=\hbar^{2} k^{2} / 2 m-\mu$ is the kinetic energy with respect to the chemical potential, ω_{n} is a bosonic Matsubara frequency, and the sum runs over fermionic Matsubara frequencies ϵ_{l}.
a) As a first step towards evaluating the frequency sum, decompose the product of Green functions in the definition of Π into partial fractions.
b) To perform the frequency sum, use the identity

$$
T \sum_{\epsilon_{l}} \frac{e^{i \epsilon_{l} \eta}}{i \epsilon_{l}-\xi}=n_{F}(\xi)
$$

where $n_{F}(\xi)=1 /\left(e^{\beta \xi}+1\right)$ denotes the Fermi distribution function.
c) In order to perform the remaining momentum integral

$$
-2 \int \frac{d k}{2 \pi} \frac{n_{F}[\xi(k+q)]-n_{F}[\xi(k)]}{i \omega_{n}-\xi(k+q)+\xi(k)}
$$

take the limit of zero temperature and expand both numerator and denominator to first order in q. Use the relation $\partial n_{F}(\xi) / \partial \xi=-\delta(\xi)$ valid at zero temperature.
d) Evaluate the momentum integral by using the identity

$$
\int d x \delta[f(x)]=\sum_{x_{i}} \frac{1}{\left|f^{\prime}\left(x_{i}\right)\right|}
$$

where the x_{i} are the solutions of the equation $f(x)=0$.

