Quantum Field Theory of Many-Particle Systems - Problem Set 8

Summer Term 2014

Internet: You can download this problem set at http://www.uni-leipzig.de/~rosenow.

12. The Cooper Problem

Consider a pair of electrons in a singlet state, described by the symmetric spatial wave function

$$
\begin{equation*}
\phi\left(\mathbf{r}-\mathbf{r}^{\prime}\right)=\int \frac{d^{3} k}{(2 \pi)^{3}} \chi(\mathbf{k}) e^{i \mathbf{k} \cdot\left(\mathbf{r}-\mathbf{r}^{\prime}\right)} \tag{1}
\end{equation*}
$$

In the momentum representation the Schroedinger equation has the form

$$
\begin{equation*}
\left(E-2 \frac{\hbar^{2} k^{2}}{2 m}\right) \chi(\mathbf{k})=\int \frac{d^{3} k}{(2 \pi)^{3}} V\left(\mathbf{k}, \mathbf{k}^{\prime}\right) \chi\left(\mathbf{k}^{\prime}\right) . \tag{2}
\end{equation*}
$$

We assume that the two electrons interact in the presence of a degenerate free electron gas, whose existence is felt only via the exclusion principle: electron levels with $k<k_{F}$ are forbidden to each of the two electrons, which gives the constraint:

$$
\begin{equation*}
\chi(\mathbf{k})=0, \quad k<k_{F} . \tag{3}
\end{equation*}
$$

We take the interaction of the pair to have the simple attractive form

$$
\begin{align*}
V\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\right) & \equiv-g, \quad \epsilon_{F} \leq \frac{\hbar^{2} k_{i}^{2}}{2 m} \leq \epsilon_{F}+\hbar \omega_{D}, \quad i=1,2 ; \tag{4}\\
& =0, \quad \text { otherwise },
\end{align*}
$$

and look for a bound-state solution to the Schroedinger equation (2) consistent with the constraint (3). Since we are considering only one-electron levels which in the absence of the attraction have energies in excess of $2 \epsilon_{F}$, a bound state will be one with energy E less than $2 \epsilon_{F}$, and the binding energy will be

$$
\begin{equation*}
\Delta=2 \epsilon_{F}-E \tag{5}
\end{equation*}
$$

a) Show tht a bound state of energy E exists provided that

$$
\begin{equation*}
1=g \int_{\epsilon_{F}}^{\epsilon_{F}+\hbar \omega_{D}} d \epsilon \frac{\rho(\epsilon)}{2 \epsilon-E}, \tag{6}
\end{equation*}
$$

where $\rho(\epsilon)$ is the density of one-electron levels per unit volume for a given spin.
b) Show that Eq. (6) has a solution with $E<2 \epsilon_{F}$ for arbitrarily weak g, provided that $\rho\left(\epsilon_{F}\right) \neq 0$ and that $\rho(\epsilon)$ is continuous. (Note the crucial role played by the exclusion principle: if the lower cutoff were not ϵ_{F}, but 0 , then since $\rho(0)=0$, there would not be a solution for arbitrarily weak coupling).
c) Assuming that $\rho(\epsilon)$ differs negligibly from $\rho\left(\epsilon_{F}\right) \equiv \rho_{F}$ in the range $\epsilon_{F}<\epsilon<\epsilon_{F}+\hbar \omega_{D}$, show that the binding energy is given by

$$
\begin{equation*}
\Delta=2 \hbar \omega_{D} \frac{e^{-\frac{2}{g \rho_{F}}}}{1-e^{-\frac{2}{g \rho_{F}}}}, \tag{7}
\end{equation*}
$$

or, in the weak coupling limit:

$$
\begin{equation*}
\Delta=2 \hbar \omega_{D} e^{-\frac{2}{g \rho_{F}}} . \tag{8}
\end{equation*}
$$

