Quantum Physics of Nanostructures - Problem Set 1

Winter term 2014/2015

Due date: The problem set will be discussed Wednesday, 22.10.2014.
Internet: Course information and problem sets are available online at http://www.uni-leipzig.de/~stp/QP_of_Nanostructures_WS1415.html.

1. Electronic Density of States

Consider a system of free electrons in d spatial dimensions confined to a cubic volume $\Omega=L^{d}$. The single-particle wave functions $\psi_{\mathbf{k}}(\mathbf{r})=\mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{r}} / \sqrt{\Omega}$ are eigenfunctions of the single-particle Hamiltonian $\hat{H}=\hat{\mathbf{p}}^{2} / 2 m$ with corresponding energy eigenvalues $\epsilon_{\mathbf{k}}=\hbar^{2} \mathbf{k}^{2} / 2 m$. Assume periodic boundary conditions, i.e., $\psi_{\mathbf{k}}(\mathbf{r})=\psi_{\mathbf{k}}\left(\mathbf{r}+L \mathbf{e}_{i}\right)$ for $i=1, \ldots, d$ with \mathbf{e}_{i} the i th unit vector and L the side length of the cube.
(a) Derive the quantization condition $k_{i}=2 \pi n_{i} / L, n_{i} \in \mathbb{Z}$ for the components k_{i} of the wave vectors $\mathbf{k} \in \mathbb{R}^{d}$ from the requirement of periodic boundary conditions in each of the d spatial directions. Which volume $(\Delta k)^{d}$ can be assigned to a quantum state with fixed \mathbf{k} in \mathbf{k}-space?
(b) The number of electrons in the system can be computed from

$$
N=2 \sum_{\mathbf{k}} \Theta\left(\epsilon_{F}-\epsilon_{\mathbf{k}}\right)
$$

Here, ϵ_{F} is the Fermi energy, $\sum_{\mathbf{k}} \ldots$ denotes the sum over discrete wave vectors, $\Theta(x)$ is the Heaviside function, and the factor of 2 is due to spin degeneracy. In the thermodynamic limit $N \rightarrow \infty, \Omega \rightarrow \infty$ with $n=N / \Omega=$ const. the sum can be replaced by integration over continuous wave vectors. Perform this limit an find an expression for the particle density n. Show that the particle density can also be represented as

$$
n=\int_{0}^{\epsilon_{F}} d \epsilon \rho(\epsilon)
$$

with the density of states per volume

$$
\rho(\epsilon)=2 \frac{1}{\Omega} \sum_{\mathbf{k}} \delta\left(\epsilon-\epsilon_{\mathbf{k}}\right),
$$

and find the corresponding expression in the thermodynamic limit. The factor of 2 again takes into account the spin degree of freedom.
(c) Compute the function $\rho(\epsilon)$ in the cases $d=1,2,3$.

2. Random Walk in one Dimension

Consider a particle in one spatial dimension, whose position at time $t=0$ is given by x_{0}. The dynamics of the particle takes place in discrete time steps. After the i th time step, the particle's current position has changed by $\xi_{i}=+\Delta x$ with probability $P_{+}=1 / 2$, and by $\xi_{i}=-\Delta x$ with probability $P_{-}=1 / 2$, where $\Delta x>0$. For a total of N time steps, the position of the particle can be described by

$$
x_{N}=\sum_{i=1}^{N} \xi_{i}+x_{0} .
$$

Compute $\left\langle x_{N}\right\rangle$ and $\left\langle\left(x_{N}-\left\langle x_{N}\right\rangle\right)^{2}\right\rangle$. The random variables $\xi_{i}, i=1, \ldots, N$ are assumed to be independent and identically distributed. That is, they are mutually independent for $i \neq j$ and are all distributed according to $\left\{P_{+}, P_{-}\right\}$. How does $\left\langle\left(x_{N}-\left\langle x_{N}\right\rangle\right)^{2}\right\rangle$ behave with increasing N ? Specify how the limit $\Delta t \rightarrow 0, \Delta x \rightarrow 0$ has to be understood, in order to obtain a finite result.

3. Thermal Transport

The Boltzmann equation for the distribution function $f(t, \mathbf{r}, \mathbf{p})$ with the collision term in the relaxation-time approximation reads

$$
\frac{\partial}{\partial t} f(t, \mathbf{r}, \mathbf{p})+\mathbf{v} \cdot \nabla_{\mathbf{r}} f(t, \mathbf{r}, \mathbf{p})+q \mathbf{E} \cdot \nabla_{\mathbf{p}} f(t, \mathbf{r}, \mathbf{p})=-\frac{f-f_{0}}{\tau} .
$$

In the following, restrict your computations to the stationary, field-free situation $\left(\partial_{t} f=0\right.$, $\mathbf{E}=0$) with a finite temperature gradient ∇T.
(a) Write $f=f_{0}+f_{1}$ with the equilibrium distribution

$$
f_{0}(\mathbf{r}, \mathbf{p})=\frac{1}{\mathrm{e}^{\beta(\mathbf{r})\left(\epsilon_{\mathbf{p}}-\mu\right)}+1}
$$

where μ and $\beta(\mathbf{r})=1 / k_{B} T(\mathbf{r})$ denote the chemical potential and the local inverse temperature, respectively. Linearize the Boltzmann equation in f_{1} and ∇T.
(b) Determine the change f_{1} in the distribution function due to the temperature gradient.
(c) Compute the heat current density \mathbf{j}_{Q}, defined as (the equilibrium part of f does not yield a finite contribution)

$$
\mathbf{j}_{Q}(\mathbf{r})=2 \int \frac{d^{3} k}{(2 \pi)^{3}} \mathbf{v}\left(\epsilon_{\mathbf{p}}-\mu\right) f_{1}(\mathbf{r}, \mathbf{p}) .
$$

For vanishing electric field, the relation

$$
\mathbf{j}_{Q}=-\kappa \nabla T
$$

between heat current density and temperature gradient ∇T defines the electronic contribution to thermal conductivity, κ. Determine κ and using the expression for σ (take the result from the lecture) also determine the so-called Lorenz number $L_{0}=\kappa / \sigma T$.

Note: Proceed for part (c) as done in the lecture for the computation of σ. The following remarks might prove useful:

- Express integrations over modulus of momentum $k=|\mathbf{k}|$ by integrations over the energy variable ϵ by employing the density of states $\rho(\epsilon)$.
- Assume the density of states $\rho(\epsilon) \simeq \rho(\mu)$ in an interval of width $k_{B} T$ around the Fermi energy.
- To evaluate energy integrals, make use of the Sommerfeld expansion

$$
\int_{0}^{+\infty} d \epsilon \frac{H(\epsilon)}{\mathrm{e}^{\beta(\epsilon-\mu)}+1}=\int_{0}^{\mu} d \epsilon H(\epsilon)+\frac{\pi^{2}}{6}\left(k_{B} T\right)^{2} H^{\prime}(\mu)+\mathcal{O}\left(\frac{1}{\beta \mu}\right)^{4} .
$$

