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1. Electronic Density of States 2+2+4 Points

Consider a system of free electrons in d spatial dimensions confined to a cubic volume Ω = Ld.
The single-particle wave functions ψk(r) = eik·r/

√
Ω are eigenfunctions of the single-particle

Hamiltonian Ĥ = p̂2/2m with corresponding energy eigenvalues εk = ~2k2/2m. Assume periodic
boundary conditions, i.e., ψk(r) = ψk(r + Lei) for i = 1, . . . , d with ei the ith unit vector and
L the side length of the cube.

(a) Derive the quantization condition ki = 2πni/L, ni ∈ Z for the components ki of the wave
vectors k ∈ Rd from the requirement of periodic boundary conditions in each of the d
spatial directions. Which volume (∆k)d can be assigned to a quantum state with fixed k
in k-space?

(b) The number of electrons in the system can be computed from

N = 2
∑
k

Θ(εF − εk).

Here, εF is the Fermi energy,
∑

k . . . denotes the sum over discrete wave vectors, Θ(x) is
the Heaviside function, and the factor of 2 is due to spin degeneracy. In the thermodynamic
limit N →∞, Ω→∞ with n = N/Ω = const. the sum can be replaced by integration over
continuous wave vectors. Perform this limit an find an expression for the particle density
n. Show that the particle density can also be represented as

n =

∫ εF

0
dε ρ(ε),

with the density of states per volume

ρ(ε) = 2
1

Ω

∑
k

δ(ε− εk),

and find the corresponding expression in the thermodynamic limit. The factor of 2 again
takes into account the spin degree of freedom.

(c) Compute the function ρ(ε) in the cases d = 1, 2, 3.
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2. Random Walk in one Dimension 4 Points

Consider a particle in one spatial dimension, whose position at time t = 0 is given by x0. The
dynamics of the particle takes place in discrete time steps. After the ith time step, the particle’s
current position has changed by ξi = +∆x with probability P+ = 1/2, and by ξi = −∆x with
probability P− = 1/2, where ∆x > 0. For a total of N time steps, the position of the particle
can be described by

xN =

N∑
i=1

ξi + x0.

Compute 〈xN 〉 and
〈
(xN − 〈xN 〉)2

〉
. The random variables ξi, i = 1, . . . , N are assumed to be

independent and identically distributed. That is, they are mutually independent for i 6= j and
are all distributed according to {P+, P−}. How does

〈
(xN − 〈xN 〉)2

〉
behave with increasing N?

Specify how the limit ∆t→ 0, ∆x→ 0 has to be understood, in order to obtain a finite result.

3. Thermal Transport 2+2+4 Points

The Boltzmann equation for the distribution function f(t, r,p) with the collision term in the
relaxation-time approximation reads

∂

∂t
f(t, r,p) + v · ∇rf(t, r,p) + qE · ∇pf(t, r,p) = −f − f0

τ
.

In the following, restrict your computations to the stationary, field-free situation (∂tf = 0,
E = 0) with a finite temperature gradient ∇T .

(a) Write f = f0 + f1 with the equilibrium distribution

f0(r,p) =
1

eβ(r)(εp−µ) + 1
,

where µ and β(r) = 1/kBT (r) denote the chemical potential and the local inverse tempe-
rature, respectively. Linearize the Boltzmann equation in f1 and ∇T .

(b) Determine the change f1 in the distribution function due to the temperature gradient.

(c) Compute the heat current density jQ, defined as (the equilibrium part of f does not yield
a finite contribution)

jQ(r) = 2

∫
d3k

(2π)3
v (εp − µ) f1(r,p).

For vanishing electric field, the relation

jQ = −κ∇T

between heat current density and temperature gradient ∇T defines the electronic contri-
bution to thermal conductivity, κ. Determine κ and using the expression for σ (take the
result from the lecture) also determine the so-called Lorenz number L0 = κ/σT .

Note: Proceed for part (c) as done in the lecture for the computation of σ. The following
remarks might prove useful:

• Express integrations over modulus of momentum k = |k| by integrations over the energy
variable ε by employing the density of states ρ(ε).
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• Assume the density of states ρ(ε) ' ρ(µ) in an interval of width kBT around the Fermi
energy.

• To evaluate energy integrals, make use of the Sommerfeld expansion∫ +∞

0
dε

H(ε)

eβ(ε−µ) + 1
=

∫ µ

0
dεH(ε) +

π2

6
(kBT )2H ′(µ) +O

(
1

βµ

)4

.
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