Quantum Physics of Nanostructures - Problem Set 2

Winter term 2014/2015

Due date: The problem set will be discussed Wednesday, 05.11.2014.
Internet: Course information and problem sets are available online at http://www.uni-leipzig.de/~stp/QP_of_Nanostructures_WS1415.html.

4. Unitarity and Time-Reversal Symmetry I

In the following, consider the single-channel scattering matrix S that maps the amplitudes of incoming states $\left(i_{L}, i_{R}\right.$, where L : left, R : right) to amplitudes of outgoing states $\left(o_{L}, o_{R}\right)$ of some scattering region,

$$
\binom{o_{L}}{o_{R}}=\left(\begin{array}{cc}
r & t^{\prime} \\
t & r^{\prime}
\end{array}\right)\binom{i_{L}}{i_{R}} \text {, where } S=\left(\begin{array}{cc}
r & t^{\prime} \\
t & r^{\prime}
\end{array}\right) .
$$

In the absence of magnetic fields or magnetic impurities, the Hamiltonian entering the Schrödinger equation obeys time-reversal symmetry (TRS): this tells us, that under $t \rightarrow-t$, for every solution ψ of the Schrödinger equation, ψ^{*} is a solution to the time-reversed equation (for simplicity, the spin degree of freedom is not considered here). In the scattering-matrix formalism, besides complex-conjugating amplitudes, incoming states become outgoing ones under time reversal and vice versa, while scattering is described by the same S, i.e., the following relation holds:

$$
\binom{i_{L}^{*}}{i_{R}^{*}}=\left(\begin{array}{cc}
r & t^{\prime} \\
t & r^{\prime}
\end{array}\right)\binom{o_{L}^{*}}{o_{R}^{*}} .
$$

(a) From unitarity $\left(S^{\dagger} S=\mathbb{1}\right)$ of the scattering matrix, derive the relations

$$
T+R^{\prime}=1, T^{\prime}+R=1, T+R=1 \text { and } \frac{r}{t^{\prime}}=-\left(\frac{r^{\prime}}{t}\right)^{*}
$$

where $|r|^{2}=R,|t|^{2}=T$ and $\left|r^{\prime}\right|^{2}=R^{\prime},\left|t^{\prime}\right|^{2}=T^{\prime}$.
(b) Show, that TRS implies $S=S^{T}$, where S^{T} denotes the transpose of S.
(c) Additionally assuming TRS, derive the following relation for amplitudes:

$$
\frac{r}{t}=-\left(\frac{r^{\prime}}{t}\right)^{*}
$$

5. Unitarity and Time-Reversal Symmetry II

Check whether the following 2×2 matrices qualify as a single-channel scattering matrix and if so, whether the scattering is symmetric under time reversal:
(a) $M_{1}=\exp \left(\mathrm{i} \sigma_{x} \alpha\right), \alpha \in[0,2 \pi)$,
(b) $M_{2}=\exp \left(\mathrm{i} \sigma_{y} \beta\right), \beta \in[0,2 \pi)$.
(c) $M_{3}=\exp \left(\sigma_{z} \gamma\right), \gamma \in[0,2 \pi)$.

Here, σ_{x}, σ_{y} and σ_{z} denote the Pauli matrices and are explicitly given by

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right), \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

6. Weakly Bound State

5 Points
A particle moves in a D-dimensional rotationally symmetric potential well of width d and depth V_{0} (see Figure). Assume that the width of the wave function a is much larger than the width of the potential well d, such that $a \gg d$, as illustrated in the Figure. Your task will be to analyze, whether or not an arbitrarily shallow ($V_{0} \rightarrow 0^{-}$) attractive potential well in dimension D can bind a particle.

Use the Heisenberg uncertainty relation for position and momentum to estimate the kinetic and potential energy of the ground state. Minimize the energy function $E(a)$ you get from this estimate with respect to the width of the wave function and obtain the minimizing a_{0}. For which dimensions D does a bound state $\left(E\left(a_{0}\right)<0\right)$ always exist?

