Advanced Quantum Mechanics - Problem Set 0

Winter Term 2019/20

Due Date: This problem set is discussed in the seminars on Wednesday, October 23, and

Friday, October 25.

Internet: Advanced Quantum Mechanics exercises

The aim of the problem set is to get familiar with the Dirac notation.

1. Two-level system

3 Points

Consider the Hamiltonian of a two-level system

$$\hat{H} = a(|1\rangle\langle 1| - |2\rangle\langle 2| + |1\rangle\langle 2| + |2\rangle\langle 1|),$$

where a > 0 has dimensions of an energy. Calculate the energy eigenvalues and eigenstates with respect to the orthonormal basis $\{|1\rangle, |2\rangle\}$.

2. Unitary transformation

1+2 Points

Consider the unitary transformation $|\psi'\rangle = \hat{U}|\psi\rangle$.

- (a) Show that the operator \hat{A} has to be transformed as $\hat{A}' = \hat{U}\hat{A}\hat{U}^{\dagger}$
- (b) Show that with these definitions the following properties of the operators are conserved in the transformation:
 - (i) linearity and hermiticity
 - (ii) commutation relations
 - (iii) the eigenvalue spectrum
 - (iv) the algebraic relations $\hat{F} = \hat{K} + \hat{M}$ and $\hat{F} = \hat{K}\hat{M}$

3. Momentum representation

2+2 Points

Let $|\alpha\rangle$ and $|\beta\rangle$ be arbitrary ket-vectors. Use the normalization $\langle p|p'\rangle = \delta(p-p')$ and completeness relation $\int dx |x\rangle\langle x| = \hat{1}$ to obtain an expression for $\langle x|p\rangle$. Show then explicitly

- (a) $\langle p|\hat{x}|\alpha\rangle = i\hbar \frac{\partial}{\partial p}\psi_{\alpha}(p),$
- (b) $\langle \beta | \hat{x} | \alpha \rangle = \int dp \ \psi_{\beta}^*(p) i \hbar \frac{\partial}{\partial p} \psi_{\alpha}(p).$

Here $\psi_{\alpha}(p) \equiv \langle p | \alpha \rangle$ and $\psi_{\beta}(p) \equiv \langle p | \beta \rangle$ are one dimensional wave functions in momentum representation and \hat{x} is the position operator.

4. Change of representation

4 Points

Let's denote the eigenstate of the position operator \hat{x} with eigenvalue x as $|x\rangle$, the eigenstate of the momentum operator \hat{p} with eigenvalue p as $|p\rangle$ and the eigenstate of the Hamilton operator $\hat{H} = \frac{\hat{p}^2}{2m}$ with energy E as $|E\rangle$. Assume that the state $|\Psi\rangle$ in the momentum representation is given as $\langle p|\Psi\rangle = \frac{1}{\sqrt{2\pi\hbar}} \exp(-ix_0 \frac{p}{\hbar})$.

- (a) Calculate $\langle x|\Psi\rangle$. How can the state $|\Psi\rangle$ therefore be described?
- (b) Use the eigenvalue equation for \hat{H} and the matrix elements $\langle x|\hat{H}|x'\rangle = -\frac{d^2}{dx^2}\delta(x-x')\frac{\hbar^2}{2m}$ to derive a differential equation for $\Psi_E(x) = \langle x|E\rangle$ and solve $\Psi_E(x)$.
- (c) Calculate the matrix elements $\langle E|\hat{H}|E'\rangle$.