Advanced Quantum Mechanics - Problem Set 6

Winter Term 2021/22

Due Date: Hand in solutions to problems marked with * before Monday, 29.11.2021, 12:00.

The problem set will be discussed in the tutorials on Wednesday, 01.12.2021, and Friday, 03.12.2021

*1. Graphene

3+1+3 Points

The Hamiltonian for graphene near the K' point is given by

$$H = \hbar v_F \left(\begin{array}{cc} 0 & q_x + iq_y \\ q_x - iq_y & 0 \end{array} \right),$$

where v_F is the Fermi velocity.

- (a) Calculate the normalized eigenstates of this Hamiltonian.
- (b) We now consider next-nearest neighbors. The Hamiltonian is then modified by

$$H_{\mathrm{nnn}} = -\frac{t'}{2} \sum_{\langle\langle i,j \rangle\rangle} (|i,A\rangle\langle j,A| + |i,B\rangle\langle j,B| + \mathrm{h.c}),$$

where A and B denote different sub-lattices and the sum is over next-nearest neighbors. Write down the next-nearest neighbor lattice vectors.

(c) Show that the next-nearest neighbors give rise to an extra contribution to the spectrum of -t'f(q) with

$$f(\mathbf{q}) = 2\cos\left(\sqrt{3}q_ya\right) + 4\cos\left(\frac{\sqrt{3}}{2}q_ya\right)\cos\left(\frac{3}{2}q_xa\right).$$

2. Relativistic Landau Levels

3+3+2 Points

A Hamiltonian for electrons moving in two spatial dimensions is given by

$$H = v_F \begin{pmatrix} -\boldsymbol{\sigma}^* \cdot \boldsymbol{p} & 0 \\ 0 & \boldsymbol{\sigma} \cdot \boldsymbol{p} \end{pmatrix},$$

where v_F is the Fermi velocity, \boldsymbol{p} the momentum and $\boldsymbol{\sigma}$ the vector of Pauli matrices. The eigenstates can be written as four-dimensional state vectors with contributions from the \boldsymbol{K} and \boldsymbol{K}' points. That is, we write

$$\chi = \begin{pmatrix} \chi_A' \\ \chi_B' \\ \chi_A \\ \chi_B \end{pmatrix}.$$

(a) Show that the eigenvalue equations decouple into

$$E^{2}\chi_{A} = v_{F}^{2}(p_{x} - ip_{y})(p_{x} + ip_{y})\chi_{A},$$

$$E^{2}\chi_{B} = v_{F}^{2}(p_{x} + ip_{y})(p_{x} - ip_{y})\chi_{B},$$

and similar for the primed parts of the eigenstates.

- (b) Suppose now a magnetic field is switched on. Using the Landau gauge $\mathbf{A} = (-By, 0)$, perform the minimal substitution $\mathbf{p} \to \mathbf{p} \frac{e}{c}\mathbf{A}$ in the eigenvalue equations in part (a) and deduce the form of the eigenfunctions.
- (c) What does the energy spectrum look like?

3. Representations of γ matrices

2+1+2 Points

(Note that for bachelor students this problem is not mandatory in the course with the lower number of credit points.)

The γ matrices can be written as

$$\begin{split} \gamma_i &= \left(\begin{array}{cc} 0 & \sigma_i \\ -\sigma_i & 0 \end{array} \right), \qquad i = 1, 2, 3 \\ \gamma_0 &= \left(\begin{array}{cc} \mathbbm{1}_2 & 0 \\ 0 & -\mathbbm{1}_2 \end{array} \right), \end{split}$$

where σ_i denotes a Pauli matrix and $\mathbb{1}_n$ the $n \times n$ unit matrix. Consider the metric $\eta = \operatorname{diag}(1, -1, -1, -1)$.

- (a) Show that the γ matrices satisfy the Clifford algebra $\{\gamma_{\mu}, \gamma_{\nu}\} = 2\eta_{\mu\nu} \mathbb{1}_4, \ \mu, \nu \in \{0, 1, 2, 3\}.$
- (b) A different representation is the Weyl representation where

$$\gamma_0 = \left(\begin{array}{cc} 0 & \mathbb{1}_2 \\ \mathbb{1}_2 & 0 \end{array} \right).$$

Show that these still satisfy the Clifford algebra.

(c) Using only the Clifford algebra and properties of the trace show that $tr(\gamma_{\mu}) = 0$, $tr(\gamma_{\mu}\gamma_{\nu}) = 4\eta_{\mu\nu}$, and $tr(\gamma_{\mu}\gamma_{\nu}\gamma_{\rho}) = 0$.