Advanced Statistical Physics - Problem Set 13

Summer Term 2018

Due Date: Tueday, July 10, 09:15 a.m., mailbox inside ITP

Internet: Advanced Statistical Physics exercises

This exercise sheet is **not mandatory**, but you can solve it to get additional points. In case that you already have the 50 % of the points from the exercises, it will not be marked.

20. Higgs mechanism

3+3+4+4 Points

This problem is related to the Higgs mechanism. You will find that the coupling of the gauge field to the superconducting order parameter will give rise to a mass for the photons. The manifestation of the Higgs mechanism in superconductors is the Meissner effect.

The Landau-Ginzburg model of superconductivity describes a complex superconducting order parameter $\psi(\mathbf{x})$, and the electromagnetic vector potential $\mathbf{A}(\mathbf{x})$, which are subject to a Hamiltonian

$$\beta \mathcal{H} = \int d^d x \left[\frac{K}{2} D_\mu \psi D_\mu^* \psi^* + \frac{t}{2} |\psi|^2 + u|\psi|^4 + \frac{L}{2} (\nabla \times \mathbf{A})^2 \right].$$

Here the gauge-invariant derivative $D_{\mu} = \partial_{\mu} - ieA_{\mu}(\mathbf{x})$ introduces a coupling between the two fields.

a) Show that the above Hamiltonian is invariant under the local gauge symmetry:

$$\psi(\mathbf{x}) \to \psi(\mathbf{x})e^{i\theta(\mathbf{x})}$$
, $A_{\mu} \to A_{\mu} + \frac{1}{e}\partial_{\mu}\theta$.

- **b)** Show that there is a saddle point solution of the form $\psi(x) = \overline{\psi}$ and A = 0, and find $\overline{\psi}$ for t > 0 and t < 0.
- c) For t < 0, calculate the cost of fluctuations by setting

$$\psi(\mathbf{x}) = (\overline{\psi} + \phi(\mathbf{x}))e^{i\theta(\mathbf{x})}, \qquad A_{\mu}(\mathbf{x}) = a_{\mu}(\mathbf{x}).$$

and expanding $\beta \mathcal{H}$ to quadratic order in ϕ , θ and a_{μ} . Use the Coulomb gauge $\partial_{\mu}a_{\mu} = 0$. Further, you may assume that $\overline{\psi}$, $\phi(\mathbf{x})$, $a_{\mu}(\mathbf{x}) \in \mathbb{R}$.

d) Perform a Fourier transformation, and calculate the expectation values of $\langle |\phi(\boldsymbol{q})|^2 \rangle$, $\langle |\theta(\boldsymbol{q})|^2 \rangle$, and $\langle |\boldsymbol{a}(\boldsymbol{q})|^2 \rangle$.