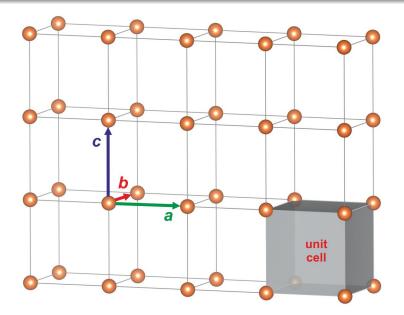
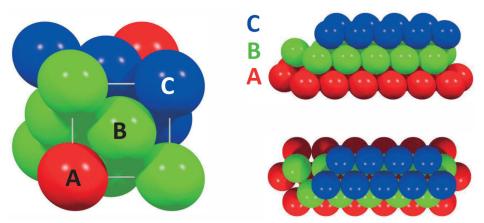

Symmetry as the guiding principle


by Alexander Tsirlin, Leipzig University

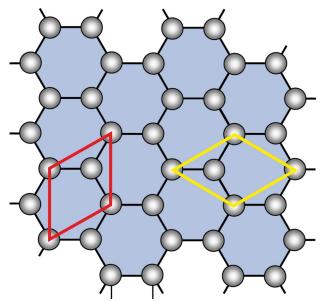
Lecture 2: October 12, 2023


Exp. Physics 5 - Solid State Physics, WS23/24

Symmetry as the guiding principle

Simple cubic lattice

Close packing: ABCABC



fcc (face-centered cubic) structure entails additional translations along half of the face diagonal

Image from Gross and Marx, Festkörperphysik

Exp. Physics 5 - Solid State Physics, WS 23/24 Symmetry as the guiding principle

Honeycomb lattice again

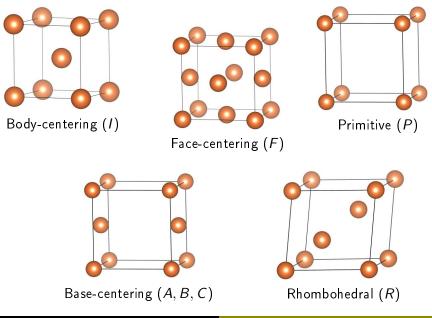
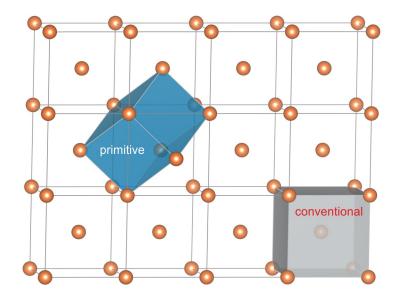

 60° rotation

Image credit: Thomas Bresson (CC-BY-SA) and S. Hunklinger, Festkörperphysik


Exp. Physics 5 - Solid State Physics, WS 23/24

Symmetry as the guiding principle

Lattice centering

Primitive vs. conventional unit cell

Structures of simple metals

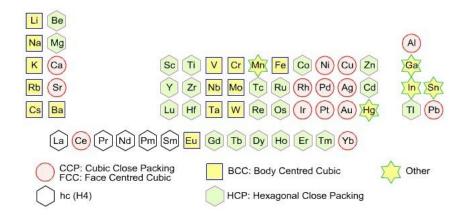


Image by Jeanne Paquette (fair use)

Rotation axes

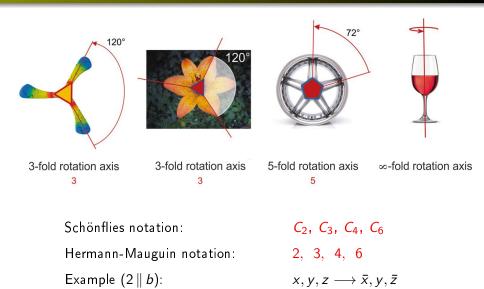


Image credit: F. Hoffmann, Faszination Kristalle und Symmetrie

Rotation axes

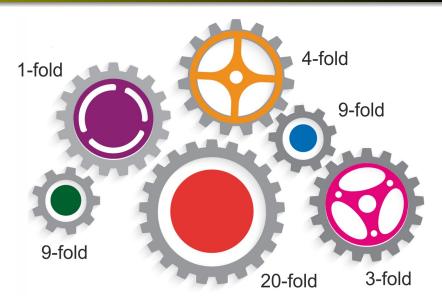


Image credit: F. Hoffmann, Faszination Kristalle und Symmetrie

Experimental technique *polarimetry and birefringence*

Exp. Physics 5 - Solid State Physics, WS 23/24 Symmetry as the guiding principle

Birefringence

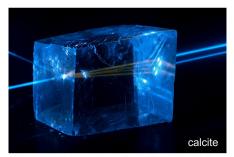
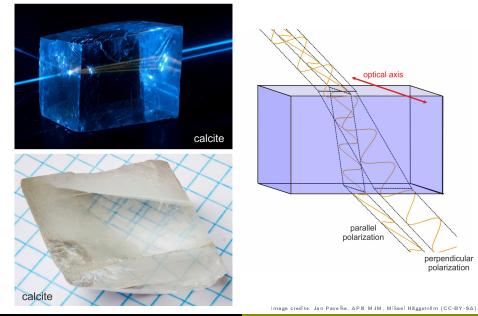
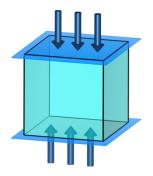



Image credits: Jan Pavelka, APN MJM, Mikael Häggström (CC-BY-SA)

Birefringence

Exp. Physics 5 - Solid State Physics, WS 23/24

Symmetry as the guiding principle


Identification of minerals

Material 🗢	Crystal system ◆	<i>n</i> ₀ ♦	n _e ♦	$\Delta n \Rightarrow$
barium borate BaB ₂ O ₄	Trigonal	1.6776	1.5534	-0.1242
beryl Be ₃ Al ₂ (SiO ₃) ₆	Hexagonal	1.602	1.557	-0.045
calcite CaCO ₃	Trigonal	1.658	1.486	-0.172
ice H ₂ O	Hexagonal	1.3090	1.3104	+0.0014[12]
lithium niobate LiNbO ₃	Trigonal	2.272	2.187	-0.085
magnesium fluoride MgF ₂	Tetragonal	1.380	1.385	+0.006
quartz SiO ₂	Trigonal	1.544	1.553	+0.009
ruby Al ₂ O ₃	Trigonal	1.770	1.762	-0.008
rutile TiO ₂	Tetragonal	2.616	2.903	+0.287
sapphire Al ₂ O ₃	Trigonal	1.768	1.760	-0.008
silicon carbide SiC	Hexagonal	2.647	2.693	+0.046

Birefringence as a fingerprint of structural anisotropy

Sources: Wikipedia and Daigger Scientific (fair use)

Stress mapping

Birefringence due to stress

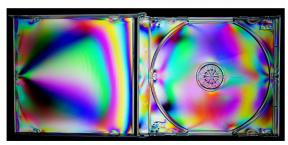
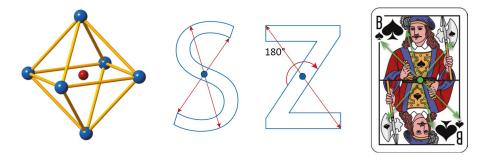



Image credits: 3465 and Mk2010 (CC-BY-SA)

Exp. Physics 5 - Solid State Physics, WS 23/24

Inversion center

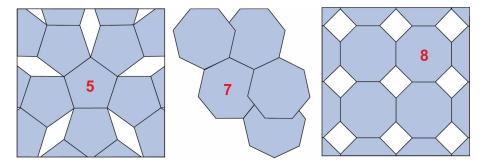
Schönflies notation:

Hermann-Mauguin notation:

Example:

i $\overline{1}$ or -1 $x, y, z \longrightarrow \overline{x}, \overline{y}, \overline{z}$

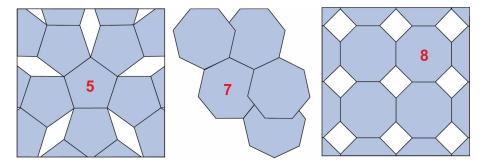
Image credit: F. Hoffmann, Faszination Kristalle und Symmetrie


Mirror plane

Schönflies notation: σ_h or σ_v Hermann-Mauguin notation:mExample $(m \perp b)$: $x, y, z \longrightarrow x, \bar{y}, z$

Image credit: F. Hoffmann, Faszination Kristalle und Symmetrie

Forbidden symmetry elements


Only 2, 3, 4, and 6-fold rotations are compatible with periodicity

any other rotations are forbidden in crystals

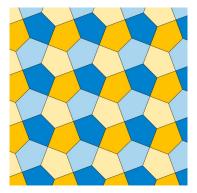
Image credit: S. Hunklinger, Festkörperphysik

Forbidden symmetry elements

Only 2, 3, 4, and 6-fold rotations are compatible with periodicity

any other rotations are forbidden in conventional crystals

Image credit: S. Hunklinger, Festkörperphysik

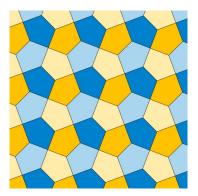


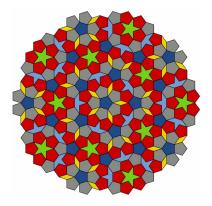
Material

Quasicrystals

Exp. Physics 5 - Solid State Physics, WS 23/24 Symmetry as the guiding principle

Pentagonal tilings

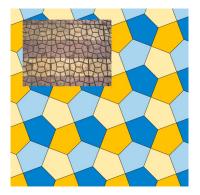


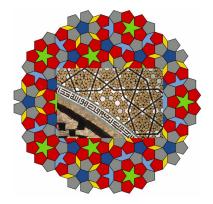

Cairo lattice

Pentagons must be deformed

Image credits: Inductiveload (CC-zero), David Eppstein (CC-zero), Parabola 52, 1 (2019)

Pentagonal tilings


Cairo lattice


Penrose tiling

Pentagons must be deformed, or one should give up the periodicity

Image credits: Inductiveload (CC-zero), David Eppstein (CC-zero), Parabola 52, 1 (2019)

Pentagonal tilings

Cairo lattice

Penrose tiling

Pentagons must be deformed, or one should give up the periodicity

Image credits: Inductiveload (CC-zero), David Eppstein (CC-zero), Parabola 52, 1 (2019)

Quasicrystals

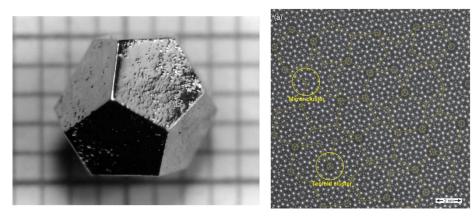


Photo of Ho₉Mg₃₄Zn₅₇ on the mm-grid HAADF-STEM image of Al₅₈Cu₂₆Ir₁₆

Five-fold symmetry and no periodicity, an aperiodic crystal

Image credits: J. Cryst. Growth 225, 155 (2001) and Microscopy 64, 341 (2015)

Occurrence and applications

lcosahedrite (Khatyrka meteorite) Al₆₃Cu₂₄Fe₁₃ Frying pan with quasicrystalline coating

Image credits: mindat.org and Fundamentals of Friction and Wear (Springer, 2007)

Quasicrystals are rebels

QUASICRYSTALS ARE THE

QUASICRYSTALS BREAK ALL THE RULES, AND THEY DON'T GIVE A #Q\$B.

Image credits: Veronica M. Berns, Atomic size matters and J. Cryst. Growth 225, 155 (2001)

Exp. Physics 5 - Solid State Physics, WS 23/24

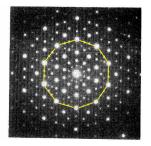
Person

Dan Shechtman

Exp. Physics 5 - Solid State Physics, WS 23/24 Symmetry as the guiding principle

Dan Shechtman

- 1972: PhD in materials engineering, Technion – Israel Institute of Technology
- 1972-75: postdoc on airplane materials, at Aerospace Research Labs, Ohio, US
- from 1975: senior lecturer at Technion
- 1982: discovery of quasicrystals in MnAl₆



Dan Shechtman born 1941

Image credit: Technion - Israel Institute of Technology (CC-BY-SA)

Difficult acceptance

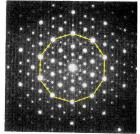

AL. 15 4/0 Mn April 8,02 540 540 25k 11k 121 Tik Sło Sło Sło Sło Słk of Słk of 1727 (10 Fold !!!) . 172 9 -364 06 510 1300 731 o look an 1354 outh ptde 340 I hat not another area

Image credit: Phys. Rev. Lett. 53, 1951 (1984), NIST

Exp. Physics 5 - Solid State Physics, WS 23/24 Symmetry as the guiding principle

Difficult acceptance

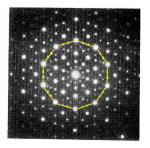

Head of the lab gives him a crystallography textbook, then fires him for "bringing disgrace"

Image credit: Phys. Rev. Lett. 53, 1951 (1984), NIST

Difficult acceptance

Linus Pauling

Head of the lab gives him a crystallography textbook, then fires him for "bringing disgrace"

Linus Pauling (2 Nobel prizes): ...no such things as quasicrystals, there are only quasi-scientists

Image credit: Phys. Rev. Lett. 53, 1951 (1984), NIST

Exp. Physics 5 - Solid State Physics, WS23/24

Symmetry as the guiding principle

Dan Shechtman

- 1972: PhD in materials engineering, Technion – Israel Institute of Technology
- 1972-75: postdoc on airplane materials, Aerospace Research Labs, Ohio, US
- from 1975: senior lecturer at Technion
- 1982: discovery of quasicrystals in MnAl₆
- from 1984: professor at Technion
- 2011: Nobel Prize in Chemistry
- 2014 ran for the President of Israel

Dan Shechtman born 1941

Source: Technion - Israel Institute of Technology (CC-BY-SA), Wikipedia

Dan Shechtman

- 1972: PhD in materials engineering, Technion – Israel Institute of Technology
- 1972-75: postdoc on airplane materials, Aerospace Research Labs, Ohio, US
- from 1975: senior lecturer at Technion
- 1982: discovery of quasicrystals in MnAl₆
- from 1984: professor at Technion
- 2011: Nobel Prize in Chemistry
- 2014: ran for the President of Israel

Candidate	Party	First r	ound	Second round	
Candidate	Party	Votes	%	Votes	%
Reuven Rivlin	Likud	44	37.6	63	54.3
Meir Sheetrit	Hatnuah	31	26.5	53	45.7
Dalia Itzik	Kadima	28	23.9		
Dalia Dorner	Independent	13	11.1		
Dan Shechtman	Independent	1	0.9		

Dan Shechtman born 1941

Source: Technion - Israel Institute of Technology (CC-BY-SA), Wikipedia