#### All sorts of metals



#### ab initio calculations



Li-ion batteries



Marvin Cohen



Lecture 21: January 4, 2024

by Alexander Tsirlin, Leipzig University

Exp. Physics 5 - Solid State Physics, WS23/24

All sorts of metals

#### Bands vs. DOS



## Spaghetti's



## Spaghetti's



#### Van Hove singularities



#### Metal vs. insulator



R. Gross, A. Marx, Festkörperphysik

#### Semiconductors



Band gap of a semiconductor can be larger or smaller, but it's crucial that **both types of doping** should be feasible and lead to sufficiently **high mobility** of the charge



# Experimental technique *ab initio calculations*

## Density Functional Theory (DFT)



#### Experiment vs. theory



#### Experiment vs. theory



#### **Density Functional Theory**



Electron-electron interactions are replaced by an effective, exchange-correlation potential  $V_{\rm xc}$ 

**Problem:** the exact form of  $V_{xc}$  is not known, but sensible approximations exist



Bloch functions and band energies are calculated on a mesh of *k*-points within the first Brillouin zone (irreducible part)

#### Materials Project



Multiple properties are calculated for all known materials and many hypothetical ones Extensive search capabilities, prediction of thermodynamic properties, and a lot more

**Caveat:** most information is obtained from band-structure calculations and may be inaccurate or even misleading

#### Half-metals



W.E. Pickett and J.S. Moodera, Physics Today 54(5), 39 (2001)

Half-metals



W.E. Pickett and J.S. Moodera, Physics Today 54(5), 39 (2001)

#### Half-metals



W.E. Pickett and J.S. Moodera, Physics Today 54(5), 39 (2001)

#### Half vs. semi

#### semi-sweet



Image by Makro

 $\mathsf{Half} \neq \mathsf{Semi}$ 

Half vs. semi

#### semi-sweet



#### half-sweet



Image by Starbucks

Image by Makro

 $Half \neq Semi$ 

Half vs. semi

#### semi-sweet



#### half-sweet



Image by Starbucks

#### half a pint!



Image by KegWorks

Image by Makro

 $\mathsf{Half} \neq \mathsf{Semi}$ 

#### Semi-metals / Metalloids

| Main-Group Elements<br>s Subshell fills                                                                              |                                     |                                     |                                               |                                              | Ge To                                        |                                              |                                              |                                              |                                                                           | Ľ                                           | Main-Group Elements<br>p Subshell fills      |                                              |                                             |                                             |                                             |                                             |                                             |                                             |
|----------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------|-----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|
|                                                                                                                      | 1<br>IA                             |                                     |                                               |                                              |                                              |                                              | 11.15                                        | Mr.                                          | N.                                                                        |                                             |                                              |                                              |                                             |                                             |                                             |                                             |                                             | 18<br>VIIIA                                 |
| 1                                                                                                                    | H                                   | 2<br>IIA                            |                                               |                                              |                                              |                                              |                                              |                                              | 6                                                                         |                                             |                                              |                                              | 13<br>IIIA                                  | 14<br>IVA                                   | 15<br>VA                                    | 16<br>VIA                                   | 17<br>VIIA                                  | He<br>1s <sup>2</sup>                       |
| 2                                                                                                                    |                                     | 4<br>Be<br>2s <sup>2</sup>          |                                               | d Subshell fills                             |                                              |                                              |                                              |                                              |                                                                           |                                             | 5<br>B<br>2s <sup>2</sup> 2p <sup>1</sup>    | 6<br>C<br>2s <sup>2</sup> 2p <sup>2</sup>    | N<br>25 <sup>2</sup> 2p <sup>3</sup>        | 8<br>0<br>2s <sup>2</sup> 2p <sup>4</sup>   | 9<br>F<br>2s <sup>2</sup> 2p <sup>5</sup>   | 10<br>Ne<br>2s <sup>2</sup> 2p <sup>5</sup> |                                             |                                             |
| 3                                                                                                                    | 11<br>Na<br>3s <sup>1</sup>         | 12<br>Mg<br>35 <sup>2</sup>         | 3<br>IIIB                                     | 4<br>IVB                                     | 5<br>VB                                      | 6<br>VIB                                     | 7<br>VIIB                                    | 8                                            | 9<br>VIIIB                                                                | 10                                          | 11<br>IB                                     | 12<br>IIB                                    | 13<br>Al<br>3s <sup>2</sup> 3p <sup>1</sup> | 14<br>Si<br>3s <sup>2</sup> 3p <sup>2</sup> | 15<br>P<br>3s <sup>2</sup> 3p <sup>3</sup>  | 16<br>S<br>3s <sup>2</sup> 3p <sup>4</sup>  | 17<br>Cl<br>3s <sup>2</sup> 3p <sup>5</sup> | 18<br>Ar<br>3s <sup>2</sup> 3p <sup>8</sup> |
| Period<br>A                                                                                                          | 19<br>K<br>45                       | 20<br>Ca<br>4s <sup>2</sup>         | 21<br>Sc<br>3d <sup>1</sup> 4s <sup>2</sup>   | 22<br>Ti<br>30 <sup>2</sup> 4s <sup>2</sup>  | 23<br>V<br>3d <sup>9</sup> 4s <sup>2</sup>   | 24<br>Cr<br>3d <sup>6</sup> 4s <sup>1</sup>  | 25<br>Mn<br>3d <sup>5</sup> 4s <sup>2</sup>  | 26<br>Fe<br>3d <sup>4</sup> 4s <sup>2</sup>  | 27<br>CO<br>30 <sup>7</sup> 4s <sup>2</sup>                               | 28<br>Ni<br>3d <sup>4</sup> 4s <sup>2</sup> | 29<br>Cu<br>3d <sup>10</sup> 4s <sup>1</sup> | 30<br>Zn<br>3d <sup>10</sup> 4s <sup>2</sup> | 31<br>Ga<br>4s <sup>2</sup> 4p              | 32<br>Ge<br>4s <sup>2</sup> 4p <sup>2</sup> | 33<br>As<br>4s <sup>2</sup> 4p <sup>3</sup> | 34<br>Se<br>4s <sup>2</sup> 4p <sup>4</sup> | 35<br>Br<br>4s <sup>2</sup> 4p <sup>3</sup> | 36<br>Kr<br>4s <sup>2</sup> 4p <sup>8</sup> |
| 5                                                                                                                    | 37<br>Rb<br>591                     | 38<br>Sr<br>5s <sup>2</sup>         | 39<br>Y<br>4d <sup>1</sup> 5s <sup>2</sup>    | 40<br>Zr<br>40 <sup>2</sup> 5s <sup>2</sup>  | 41<br>Nb<br>4d <sup>4</sup> 5s <sup>1</sup>  | 42<br>Mo<br>40'5s'                           | 43<br>TC<br>4d <sup>6</sup> 5s <sup>2</sup>  | 44<br>Ru<br>40'5s'                           | 45<br>Rh<br>40 <sup>6</sup> 5s <sup>1</sup>                               | 46<br>Pd<br>40 <sup>10</sup>                | 47<br>Ag<br>4d <sup>10</sup> 5s <sup>1</sup> | 48<br>Cd<br>4d <sup>10</sup> 5s <sup>2</sup> | 49<br>In<br>5s <sup>2</sup> 5p <sup>1</sup> | 50<br>Sn<br>5s <sup>2</sup> 5p <sup>2</sup> | 51<br>Sb<br>5s <sup>2</sup> 5p <sup>3</sup> | 52<br>Te<br>5s <sup>2</sup> 5p <sup>4</sup> | 53<br>I<br>5s <sup>2</sup> 5p <sup>5</sup>  | 54<br>Xe<br>5s <sup>2</sup> 5p <sup>5</sup> |
| 6                                                                                                                    | 55<br>Cs<br>681                     | 56<br>Ba<br>65 <sup>2</sup>         | 57<br>La*<br>5d <sup>1</sup> 6s <sup>2</sup>  | 72<br>Hf<br>50 <sup>2</sup> 6s <sup>2</sup>  | 73<br>Ta<br>5d <sup>2</sup> 6s <sup>2</sup>  | 74<br>W<br>5d <sup>4</sup> 6s <sup>2</sup>   | 75<br>Re<br>50 <sup>5</sup> 6s <sup>2</sup>  | 76<br>Os<br>5d <sup>4</sup> 6s <sup>2</sup>  | 77<br>Ir<br>5d <sup>7</sup> 6s <sup>2</sup>                               | 78<br>Pt<br>5d <sup>9</sup> 6s <sup>1</sup> | 79<br>Au<br>50 <sup>10</sup> 6s'             | 80<br>Hg<br>50 <sup>10</sup> 6s <sup>2</sup> | 81<br>TI<br>6s <sup>2</sup> 6p <sup>1</sup> | 82<br>Pb<br>65 <sup>2</sup> 60 <sup>2</sup> | 83<br>Bi<br>6s <sup>2</sup> 60 <sup>3</sup> | 84<br>Po<br>6s <sup>2</sup> 6p <sup>4</sup> | 85<br>At<br>6s <sup>2</sup> 60 <sup>2</sup> | 86<br>Rn<br>6s <sup>2</sup> 6d <sup>6</sup> |
| 7                                                                                                                    | 87<br>Fr<br>7 <i>s</i> <sup>1</sup> | 88<br>Ra<br>7 <i>s</i> <sup>2</sup> | 89<br>Ac**<br>6d <sup>1</sup> 7s <sup>2</sup> | 104<br>Db<br>6d <sup>2</sup> 7s <sup>2</sup> | 105<br>JI<br>6d <sup>a</sup> 7s <sup>2</sup> | 106<br>Rf<br>6d <sup>4</sup> 7s <sup>2</sup> | 107<br>Bh<br>6d <sup>5</sup> 7s <sup>2</sup> | 108<br>Hn<br>60 <sup>6</sup> 7s <sup>2</sup> | 109<br>Mt<br>6d <sup>7</sup> 7s <sup>2</sup>                              | Inr                                         | ner-Tra<br>f Sub                             | nsition<br>shell fi                          | Metals                                      | 3                                           |                                             |                                             |                                             |                                             |
| *Lanthanides<br>*Lanthanides<br>*Lanthanides<br>*Actinides<br>*Actinides<br>Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr |                                     |                                     |                                               |                                              |                                              |                                              |                                              |                                              | 71<br>Lu<br>4/ <sup>45</sup> 50 <sup>1</sup> 65 <sup>2</sup><br>103<br>Lr |                                             |                                              |                                              |                                             |                                             |                                             |                                             |                                             |                                             |
| Metal                                                                                                                |                                     |                                     |                                               |                                              |                                              |                                              |                                              |                                              |                                                                           |                                             |                                              |                                              |                                             |                                             |                                             |                                             |                                             |                                             |
| Nonmetal Image by PBworks                                                                                            |                                     |                                     |                                               |                                              |                                              |                                              |                                              |                                              |                                                                           |                                             |                                              |                                              |                                             |                                             |                                             |                                             |                                             |                                             |
|                                                                                                                      |                                     |                                     |                                               |                                              |                                              |                                              |                                              |                                              |                                                                           |                                             |                                              |                                              |                                             |                                             |                                             |                                             |                                             |                                             |

### Semi-metals (modern definition)



Electrons at the Fermi level may have very unusual properties caused by non-trivial band topology

#### Strange metals



#### Bad metals



At high T, resistivity well exceeds the Mott-loffe-Regel limit  $(I_{\rm mean} \sim a)$ 

But at low T, such "bad metals" can be still good metals (low  $\rho_{\rm dc}$ )

#### **Electronic** correlations



Each electron is dependent on other electrons in the system

#### Many-body problem

Significant repercussions for electronic properties (high-temperature superconductors, battery materials...)



# Material

Li-ion batteries

Exp. Physics 5 - Solid State Physics, WS 23/24 All sorts of metals

.

#### Li-ion batteries



#### Li-ion batteries



LiFePO<sub>4</sub> (olivine) – Nobel Prize in Chemistry 2019 but transformation is abrupt with no intermediate compositions

#### Most common correlated material

#### PHYSICAL REVIEW B 69, 201101(R) (2004)

#### Phase separation in Li<sub>x</sub>FePO<sub>4</sub> induced by correlation effects

F. Zhou\*

Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

C. A. Marianetti, M. Cococcioni, D. Morgan, and G. Ceder\*

Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA (Received 10 March 2004; published 12 May 2004)

We report on a <u>significant failure</u> of the local density approximation (LDA) and the generalized gradient approximation (GGA) to <u>reproduce the phase stability and thermodynamics</u> of mixed-valence Li<sub>x</sub>FePO<sub>4</sub> compounds. Experimentally, Li<sub>x</sub>FePO<sub>4</sub> compositions ( $0 \le x \le 1$ ) are known to be unstable and phase separate into LiFePO<sub>4</sub> and FePO<sub>4</sub>. However, first-principles calculations with LDA/GGA yield energetically favorable intermediate compounds and hence no phase separation. This qualitative failure of LDA/GGA seems to have its

> Phase separation in batteries is driven by electronic correlations Straight-forward DFT calculations do not work

Information from Materials Project

| LiFePO <sub>4</sub> |                               |                   |
|---------------------|-------------------------------|-------------------|
| mp-19017            | Energy Above Hull             | 0.000 eV/atom     |
|                     | Space Group                   | Pnma              |
|                     | Band Gap                      | 3.92 eV           |
|                     | Predicted<br>Formation Energy | -2.477<br>eV/atom |
|                     | Magnetic Ordering             | Ferromagnetic     |
|                     | Total<br>Magnetization        | 4.00 µB/f.u.      |

Information from Materials Project

| LiFePO <sub>4</sub> |                               |                   |
|---------------------|-------------------------------|-------------------|
| mp-19017            | Energy Above Hull             | 0.000 eV/atom     |
|                     | Space Group                   | Pnma 🗸            |
|                     | Band Gap                      | 3.92 eV           |
|                     | Predicted<br>Formation Energy | -2.477<br>eV/atom |
|                     | Magnetic Ordering             | Ferromagnetic     |
|                     | Total<br>Magnetization        | 4.00 μB/f.u.      |



## Person

#### Marvin Cohen



Marvin Cohen born 1935

#### 1953-1957: bachelor in Berkley, not accepted for master program

- 1958-1963: master and PhD in Chicago theory work based on electronic structure calculations for real materials
- 1963-1964: very short postdoc at Bell Labs
- since 1964: professor at Berkley
- 1960-70's: optical properties of semiconductors
- since 1970's: high-pressure transformations of solids
- 1980's: superconductors
- since 1990's: carbon allotropes, nanotubes



Marvin Cohen born 1935

- 1953-1957: bachelor in Berkley, not accepted for master program
- 1958-1963: master and PhD in Chicago theory work based on electronic structure calculations for real materials
- 1963-1964: very short postdoc at Bell Labs
- since 1964: professor at Berkley
- 1960-70's: optical properties of semiconductors
- since 1970's: high-pressure transformations of solids
- 1980's: superconductors
- since 1990's: carbon allotropes, nanotubes



Marvin Cohen born 1935

- 1953-1957: bachelor in Berkley, not accepted for master program
- 1958-1963: master and PhD in Chicago theory work based on electronic structure calculations for real materials
- 1963-1964: very short postdoc at Bell Labs
- since 1964: professor at Berkley
- 1960-70's: optical properties of semiconductors
- since 1970's: high-pressure transformations of solids
- 1980's: superconductors
- since 1990's: carbon allotropes, nanotubes



Marvin Cohen born 1935

- 1953-1957: bachelor in Berkley, not accepted for master program
- 1958-1963: master and PhD in Chicago theory work based on electronic structure calculations for real materials
- 1963-1964: very short postdoc at Bell Labs
- since 1964: professor at Berkley
- 1960-70's optical properties of semiconductors
- since 1970's: high-pressure transformations of solids
- 1980's: superconductors
- since 1990's: carbon allotropes, nanotubes

#### Cohen vs. Kohn



photo by Bill Brooks (Physics Today)

Marvin Cohen pseudopotentials pioneer of electronic-structure and DFT methods in solids

#### Walter Kohn

density-functional theory Nobel Prize in Chemistry 1998

#### **Pseudopotentials**



#### Superconducting semiconductor



SrTiO<sub>3</sub> is a mundane wide-gap semiconductor

#### Superconducting semiconductor



 $SrTiO_3$  is a mundane wide-gap semiconductor but  $SrTiO_{3-\delta}$  should be metallic and may become superconducting

#### Superconducting semiconductor

