#### How electrons move?



### Hall effect



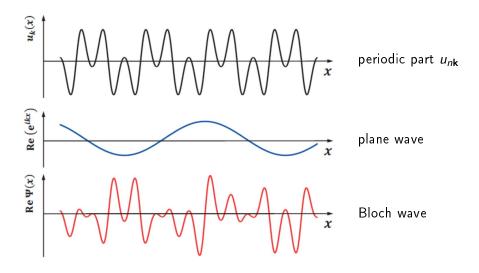
#### strontium titanate (SrTiO<sub>3</sub>)



Marvin Cohen

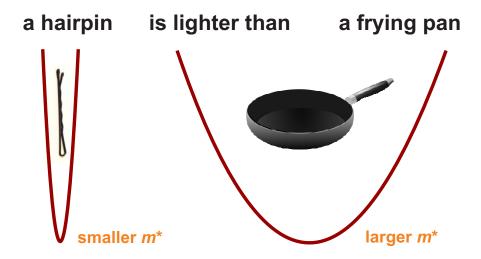


Lecture 22: January 17, 2024

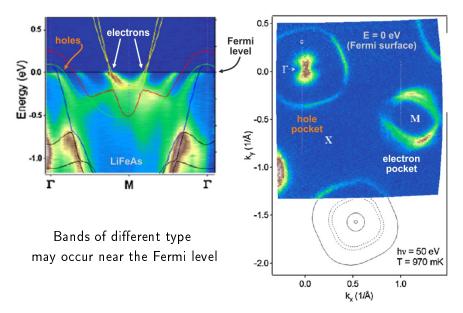

by Alexander Tsirlin, Leipzig University

Exp. Physics 5 - Solid State Physics, WS 23/24

How electrons move?

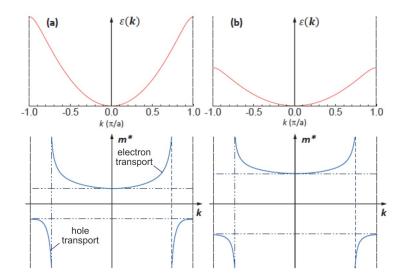

Before we start, please take 5 minutes to fill in the evaluation form for this module

#### Bloch wave




Gross and Marx, Festkörperphysik

Effective mass: mnemonic rule




#### Electron vs. hole carriers



Phys. Rev. Lett. 105, 067002 (2010)

#### Effective mass: positive vs. negative



Even single band may have hole and electron regions

Gross and Marx, Festkörperphysik



# Person

#### Marvin Cohen



Marvin Cohen (born 1935)

#### 1953-1957: bachelor in Berkley, not accepted for master program

- 1958-1963: master and PhD in Chicago theory work based on electronic structure calculations for real materials
- 1963-1964: very short postdoc at Bell Labs
- since 1964: professor at Berkley
- 1960-70's: optical properties of semiconductors
- since 1970's: high-pressure transformations of solids
- 1980's: superconductors
- since 1990's: carbon allotropes, nanotubes

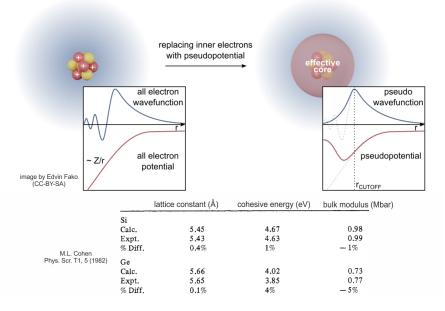


Marvin Cohen (born 1935)

- 1953-1957: bachelor in Berkley, not accepted for master program
- 1958-1963: master and PhD in Chicago theory work based on electronic structure calculations for real materials
- 1963-1964: very short postdoc at Bell Labs
- since 1964: professor at Berkley
- 1960-70's: optical properties of semiconductors
- since 1970's: high-pressure transformations of solids
- 1980's: superconductors
- since 1990's: carbon allotropes, nanotubes



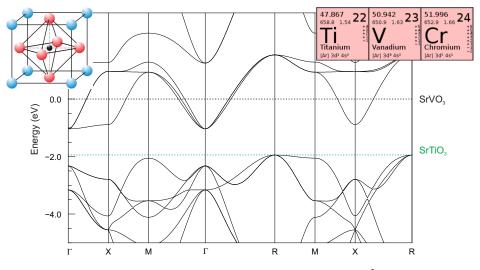
Marvin Cohen (born 1935)


- 1953-1957: bachelor in Berkley, not accepted for master program
- 1958-1963: master and PhD in Chicago theory work based on electronic structure calculations for real materials
- 1963-1964: very short postdoc at Bell Labs
- since 1964: professor at Berkley
- 1960-70's: optical properties of semiconductors
- since 1970's: high-pressure transformations of solids
- 1980's: superconductors
- since 1990's: carbon allotropes, nanotubes

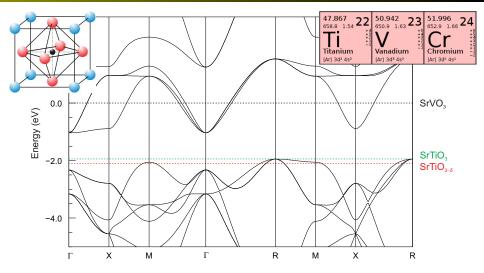


Marvin Cohen (born 1935)

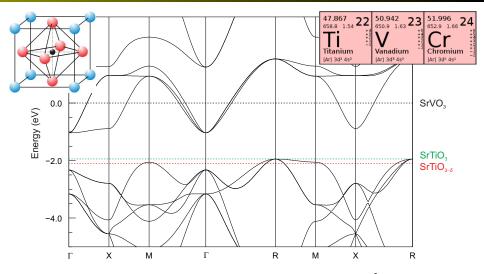
- 1953-1957: bachelor in Berkley, not accepted for master program
- 1958-1963: master and PhD in Chicago theory work based on electronic structure calculations for real materials
- 1963-1964: very short postdoc at Bell Labs
- since 1964: professor at Berkley
- 1960-70's optical properties of semiconductors
- since 1970's: high-pressure transformations of solids
- 1980's: superconductors
- since 1990's: carbon allotropes, nanotubes


#### Pseudopotentials

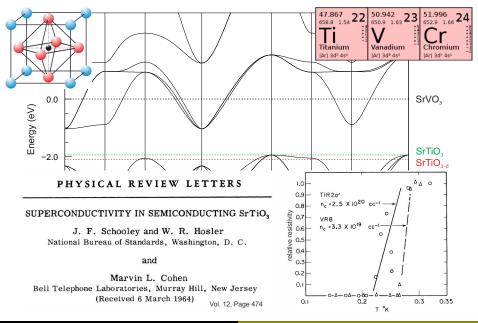





# Material


strontium titanate (SrTiO<sub>3</sub>)




SrTiO<sub>3</sub> is mundane wide-gap semiconductor ( $ho = 10^9 \, \Omega \cdot cm$ )



SrTiO<sub>3</sub> is mundane wide-gap semiconductor ( $\rho = 10^9 \,\Omega\cdot cm$ ), while SrTiO<sub>3- $\delta$ </sub> is metallic ( $\rho \sim 10 \,m\Omega\cdot cm$ )



SrTiO<sub>3</sub> is mundane wide-gap semiconductor ( $\rho = 10^9 \,\Omega\cdot cm$ ), while SrTiO<sub>3- $\delta$ </sub> is metallic ( $\rho \sim 10 \,m\Omega\cdot cm$ ), possibly superconducting





## Experimental technique *Hall effect*

Exp. Physics 5 - Solid State Physics, WS 23/24 How electrons move?

.

#### Hall effect



$$E_y = -\frac{B_z}{n_e e} j_x \quad \Rightarrow \quad R_H = \frac{E_y}{B_z j_x} = -\frac{1}{n_e e}$$

(direct measure of charge-carrier concentration)

Gross and Marx, Festkörperphysik

#### Hall magnetometry



Image credit: Mitchell Instrument (fair use)

#### Hall sensor in cars

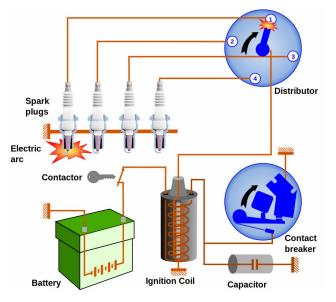





Image credit: Frédéric MICHEL and Rudolf Stricker (CC-BY-SA)

Exp. Physics 5 - Solid State Physics, WS 23/24 Hov

#### Hall sensor in cars

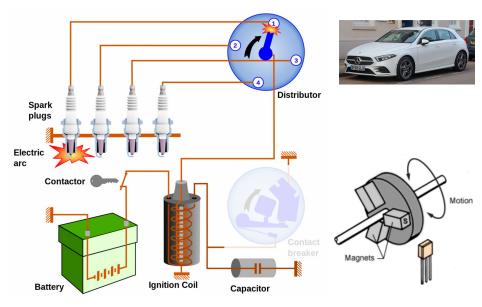



Image credit: Frédéric MICHEL and Vauxford (CC-BY-SA), Allegro Microsystems (fair use)

#### Hall-effect thruster

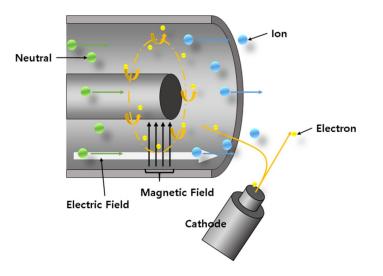
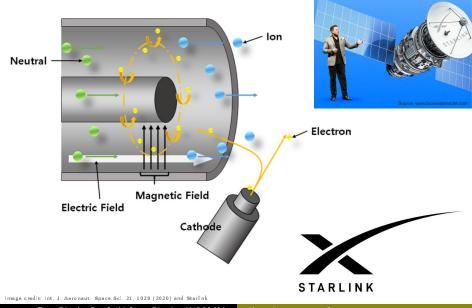
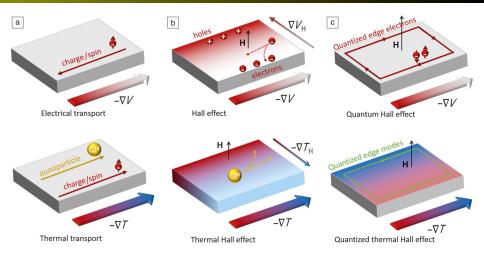




Image credit: Int. J. Aeronaut. Space Sci. 21, 1028 (2020)

#### Hall-effect thruster




| METAL | VALENCE | $-1/R_H nec$ |          |
|-------|---------|--------------|----------|
| Li    | 1       | 0.8          |          |
| Na    | 1       | 1.2          |          |
| K     | 1       | 1.1          |          |
| Rb    | 1       | 1.0          | electron |
| Cs    | 1       | 0.9          | carriers |
| Cu    | 1       | 1.5          |          |
| Ag    | I       | 1.3          |          |
| Au    | 1       | 1.5          |          |
| Be    | 2       | - 0.2        |          |
| Mg    | 2       | -0.4         | hole     |
| In    | 3       | 0.3          | carriers |
| Al    | 3       | -0.3         |          |

N.W. Ashcroft, N.D. Mermin, Solid State Physics

**N.B.**  $R_H$  values in the high-field limit; experimentally,  $R_H$  depends on the magnetic field!

#### Thermal Hall effect



Signature of non-trivial features in electronic/magnetic structure occurs in metals, magnetic insulators...

MRS Bulletin 45, 348 (2020)

#### Spin Hall effect

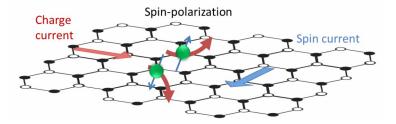
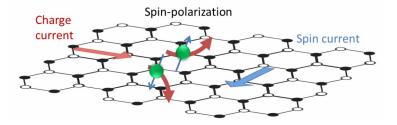




Image credit: Eleanor Holmes (CC-BY-SA)

### Spin Hall effect



caused by spin-orbit coupling common in "heavy" metals (Os, Pt)

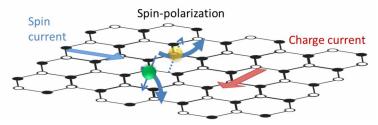
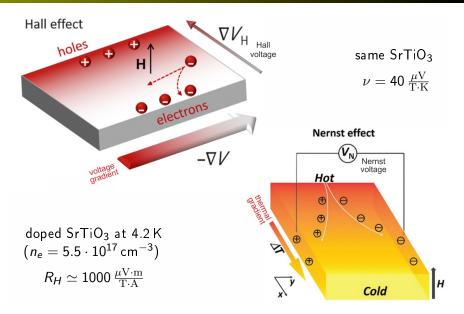




Image credit: Eleanor Holmes (CC-BY-SA)

#### Hall vs. Nernst



MRS Bulletin 45, 348 (2020) and Energy Environ. Sci. 11, 2813 (2018)