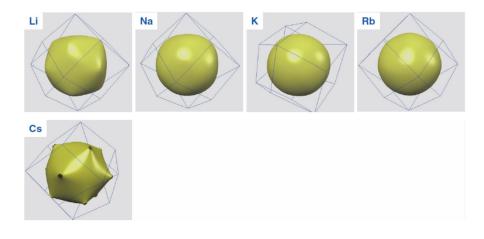
Fermiology

magnetotransport

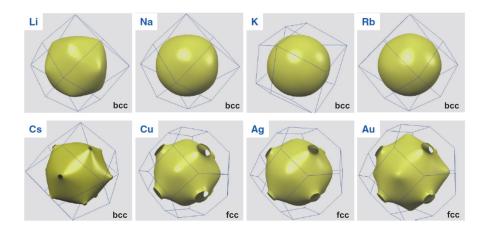
copper and its alloys

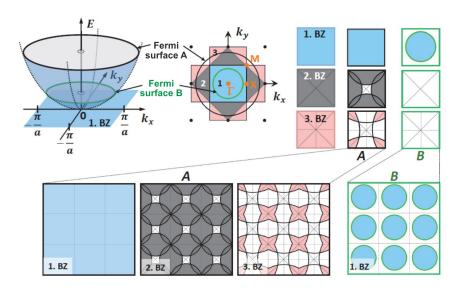
David Shoenberg

- Homeworks 1-10 have been graded, with a few exceptions
- Most of you have reached (or will clearly reach)
 50% of the points and will be admitted to the exam
- If you see that you won't make it, and you have some excuse, please write me ASAP. You will get an additional problem sheet with up to 30 points
- All admissions will be decided by February 2

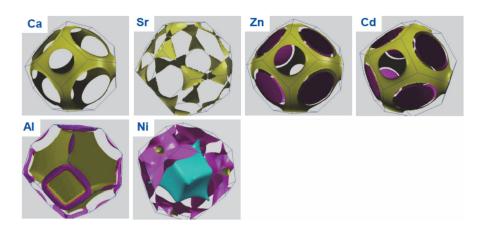

- Homeworks 1-10 have been graded, with a few exceptions
- Most of you have reached (or will clearly reach)
 50% of the points and will be admitted to the exam
- If you see that you won't make it, and you have some excuse, please write me ASAP. You will get an additional problem sheet with up to 30 points
- All admissions will be decided by February 2

Upcoming lectures

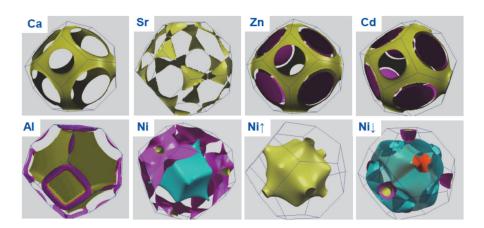

- January 24: Fermi surface, electric transport
- January 25: Transport in magnetic field, quantum oscillations
- January 31: T-dependent resistivity, scattering
- February 1: Q&A, summary

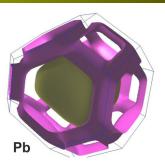

Ask your questions via e-mail

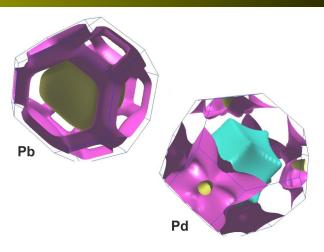
Nearly free electrons

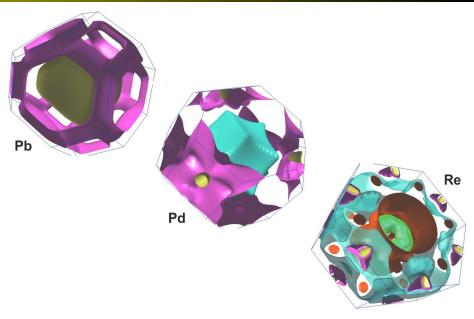


Nearly free electrons



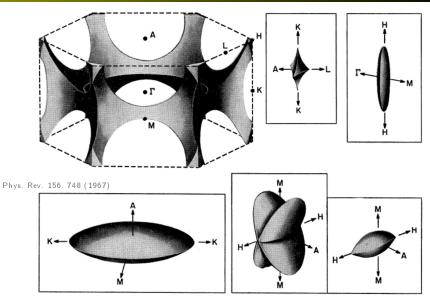

Less free electrons

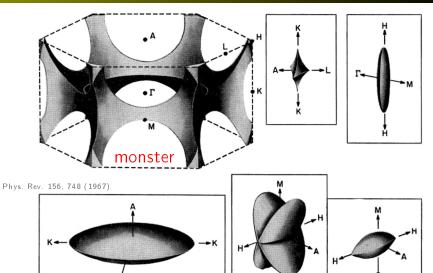

Less free electrons

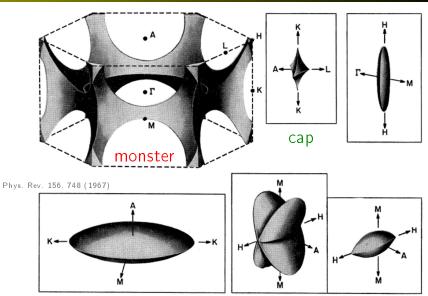

Crazy cases

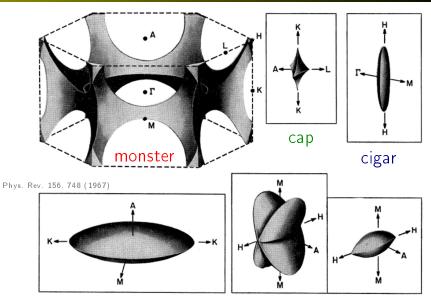
Crazy cases

Crazy cases

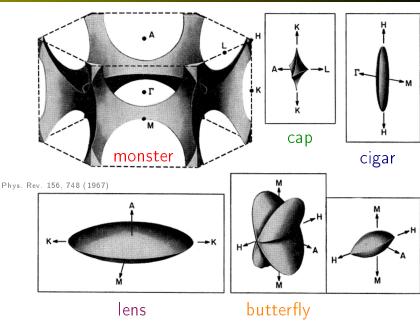

Fascination: art

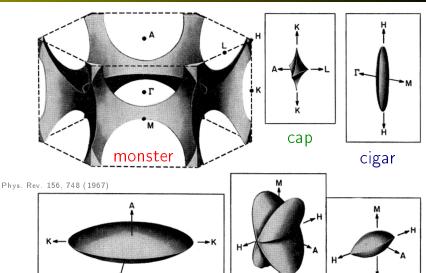



Fermi surface of Pb

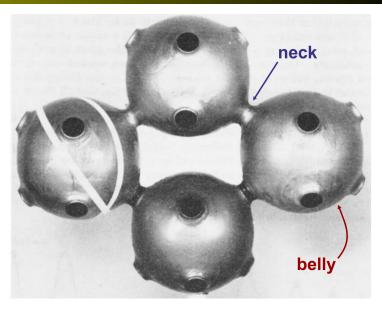



Flores para los muertos (Flowers for the Dead) by Tony Smith





Exp. Physics 5 - Solid State Physics, WS 23/24


Fermiology


lens

butterfly

leftover from the $4^{\rm th}\ BZ$

Contemp. Phys. 13, 321 (1972)

Material

Cu-based alloys

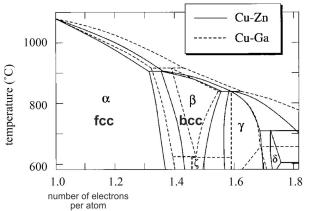
Copper and its alloys

Copper
high electrical conductivity
malleable (ductile)

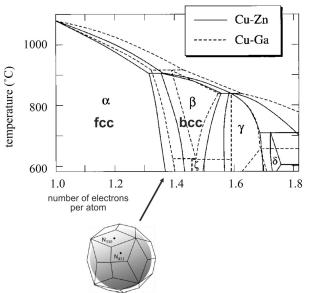
Copper and its alloys

Copper
high electrical conductivity
malleable (ductile)

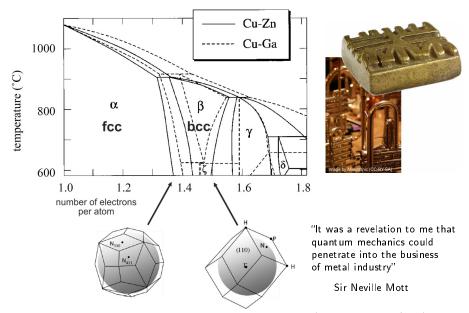
Bronze (Cu-Sn alloy)
hard metal


Bronze patina

2006 2009



Brass alloys


Brass alloys

Proc. Royal Soc. A 453, 1493 (1997) and Crystals 7, 9 (2017)

Brass alloys

Resistivity of metals

ELEMENT	$77~\mathrm{K}$ $ ho_{ ext{dc}}$ in m Ω -cm	Cu
Li	1.04	
Na	0.8	
K	1.38	
Rb	2.2	
Cs	4.5	
Cu	0.2	
Ag	0.3	
Au	0.5	
Be		
Mg	0.62	
Ca		
Sr	7	
Ba	17	
Nb	3.0	
Fe	0.66	
Sn	2.1	
Pb	4.7	
Bi	35	

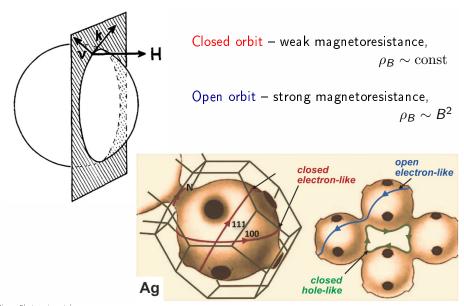
Ashcroft and Mermin Solid State Physics

Resistivity of metals

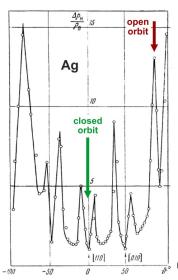
EI	LEMENT	77 K ρ _{dc} in mΩ⋅cm	Cu
	Li	1.04	
	Na	0.8	
	K	1.38	
	Rb	2.2	
	Cs	4.5	
	Cu	0.2	
	Ag	0.3	
	Au	0.5	Ba
	Be		
	Mg	0.62	
	Ca		
	Sr	7	
	Ba	17	
	Nb	3.0	
	Fe	0.66	
	Sn	2.1	
	Pb	4.7	
	Bi	35	

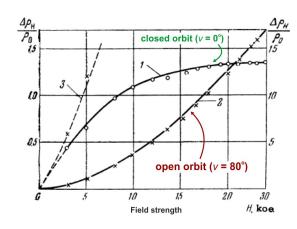
Ashcroft and Mermin Solid State Physics

Resistivity of metals


ELEMENT	$77~ ext{K}$ $ ho_ ext{ iny m}\Omega ext{-cm}$	Cu
Li	1.04	
Na	0.8	
K	1.38	
Rb	2.2	
Cs	4.5	
Cu	0.2	
Ag	0.3	
Au	0.5	Ba
Be		
Mg	0.62	
Ca		
Sr	7	
Ba	17	
Nb	3.0	
Fe	0.66	· · ·
Sn	2.1	
Pb	4.7	
Bi	35	Bi

Ashcroft and Mermin Solid State Physics


Experimental technique magnetotransport


Magnetoresistance

Ziman, Electrons in metals Gross and Marx, Festkörperphysik

Magnetoresistance

Field direction

Sov. Phys. JETP 37, 481 (1960)

Person

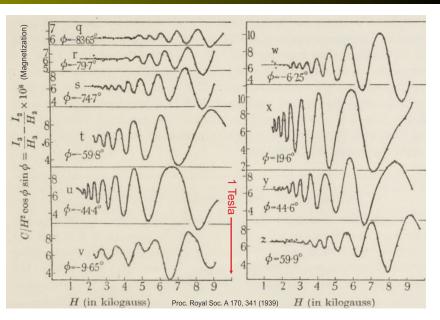
David Shoenberg

David Shoenberg

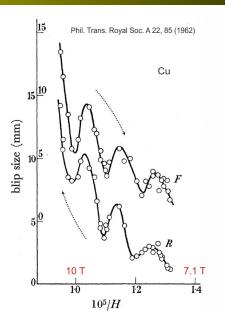
David Shoenberg 1911–2004

- early 1930's: studied physics at Trinity College, Cambridge
- 1932-1934: student of Peter Kapitza, first helium liquefier
- 1930s: magnetoresistance measurements observation of quantum oscillations
- since 1944: lecturer and later professor at Cambridge
- 1940's: experiments on superconductors (penetration depth)
- 1950's: Fermi surfaces of simple metals, Father of Fermiology

David Shoenberg 1911–2004


- early 1930's: studied physics at Trinity College, Cambridge
- 1932-1934: student of Peter Kapitza, first helium liquefier
- 1930s: magnetoresistance measurements observation of quantum oscillations
- since 1944: lecturer and later professor at Cambridge
- 1940's: experiments on superconductors (penetration depth)
- 1950's: Fermi surfaces of simple metals, Father of Fermiology

DAVID SHOENBERG


FORTY ODD YEARS IN THE COLD

reminiscences of work in low temperature physics

Oscillations in Bi

Oscillations in Cu

3 ms