UNIVERSITÄT LEIPZIG

Tonal suppletion as multi-modal featural affixation

AMP 2015 VANCOUVER OCTOBER 11, 2015

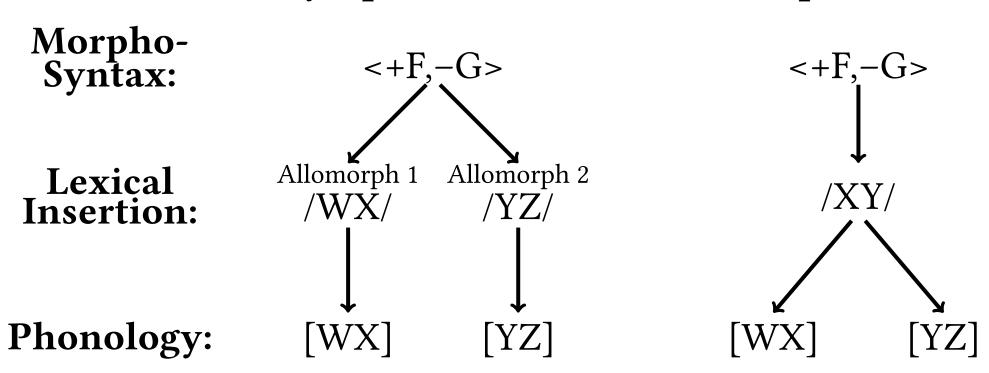
Allomorphy in Kalam Kohistani

(Dardic language, spoken in Kalam in the North-West Frontier Province of Pakistan;

- L- and H-tone; HL and LH only on $CV_{\cdot}(C)$ or $CVC \rightarrow TBU = \mu$ and codas are moraic
- two forms for nouns: a 'base' form in the singular of the direct case and an 'inflected' form in the plural of the direct case and all oblique cases
- C-final nouns (Baart, 1999a:36 and Baart, 1999b:96+96) (1)

J	•		,	
BASE	Inflect	ED		
a. bóːr	bôːr	ʻlion'	$\mathrm{H} ightarrow \mathrm{HL}$	
∫áːk	∫æ̂≀k	'piece of wood'		
új	îj	'lie' (fem)		→ Additional L
ţjæró:r	ţjærê:r	'sparrow'	$H.H \rightarrow H.HL$	on the final syllable
b. bòbæj	bòbæj	'apple'	$\text{L.H} \rightarrow \text{L.L}$	
dètér	dætær	'cooking frame'		
dærín	dærìn	'ground'		
c. múrà:l	múrà:l	'ram'	$\text{H.L} \rightarrow \text{H.L}$	
d. bǎg	běg	'place'	$LH \rightarrow LH$	
khǎn	khěn	'mountain'		

(2) V-final nouns (Baart, 1999a,b)


> BASE INFLECTED gó:^(L) a. gò $L \rightarrow H(L)$ ox' dærær^(L) 'guest room' b. dæ:rá $L.H \rightarrow H.H(L)$ xà:pèrí: xá:pérí: (L) 'fairy' $L.L.H \rightarrow H.H.H(L)$ bæːʧæː^(L) 'king' c. báxyà $H.L \rightarrow H.H(L)$ pátílá: (pot) pátílà $H.H.L \rightarrow H.H.H(L)$

→ Inflected form is H-toned and has L that is realized on following word

→ phonologically predictable allomorphy

The theoretical challenge

Polyrepresentational Monorepresentational

A monorepresentational analysis for Kalam Kohistani?

- → Why should the **nature of the base-final segment (C or V)** determine the choice between realizing an H- or L-tone?
- → Why is the L-tone only realized at the **right edge** whereas the Htone **overwrites** the base tone melody completely?

Main Claim

Inflection for V-final forms also involves **final V-lengthening**.

Such a **multi-modal nonconcatenative exponent** is predicted in an autosegmental account that assumes (complex) floating autosegments as representations for morphemes (Lieber, 1992; Wolf, 2007).

The exponent for noun inflection in Kalam Kohistani: –

A monorepresentational analysis

1. Complementary distribution of affix-µ and affix-L

- C-final bases: affix-µ not realized since there are no trimoraic syllables:
- V-final bases integrate affix-µ (and affix-H) but never affix-L as well:
- a new association between elements belonging to the same morpheme (b.) excluded by Alternation (van Oostendorp, 2007, 2012)
- no crossing association lines (c.)

	L H H L µ µ µ + µ d ä r a	Alt	No Cross	$\begin{array}{c} MAx \\ \mu_{Af} \end{array}$	Max L _{Af}
(☞) a.	L HHL µµµµ d ä r a [däɪréɪ]				*
b.	L HHL μμμμ d ä r a [däːrêː]	*!			
c.	L HHL # # # # d ä r a [därrěx]		*!		

2. A preference for associating the affix-µ

$\begin{array}{ccc} L & H L \\ \mu & + \mu \\ g & o \end{array}$		Max H _{Af}	
$\begin{array}{c} L H L \\ \mu \mu \\ g o \\ [g o x] \end{array}$			*
	*!	*•	

3. H-overwriting vs. minimal association of L

- spread of the affix-H avoids marked L-tones (=*L)
- preservation of L-tones in the absence of affix-tones: high-ranked DepH and Alt

`	L H H L μ μ + μ ä r a	Max L _{Af}	*L	Max H _{St}	Max L _{St}
a.	L HHL µµµ d ä r å [därrér]	*	* ! *		
☞ b.	L HHL	*		*	*

I: all affix H-tones overwrite \rightarrow Indeed! E.g. $/g \ddot{a} \eta k \acute{a} p / fraud' <math>\rightarrow /g \ddot{a} \eta k \ddot{a} p \ddot{a} n^L / frauds'$. II: all floating affix-L's associate minimally → Indeed! 'Delayed fall' (underlying or derived, cf. (2)) realized on first vowel of the following word.

- minimal overwriting for affix-L except:
- polysyllabic bases with an LH melody due to *LHL
- no effect for monosyllabic LH bases due to preservation of initial H (Beckman, 1998)

4. Complementary distribution of affix-H and affix-L

- realization of the affix-L: no realization of affix-H:
- either the affix-H has two root nodes (b.), violating (4)
- or the association line between affix-H and its μ is marked as invisible (c.)

	o	b a j	- μ	Max (T-μ) _{Af}	ONE RT	μ_{Af}	L _{Af}	*L
☞ a.	b	L H	ΗL μ j			*		***
b.	b	L H # µ µ o b a [bóbàj]	ΗL j		*!	*		**
c.	b	L H # µ µ o b a [bóbàj]	Η L j	*!		*		**

ONERT

Assign a violation mark for every tone that is phonetically dominated by two highest root nodes.

(Where 'root node' is defined as a node that is not dominated by a higher node.)

Extension: vowel mutation

- vowel mutation in several morphological contexts
- Vowel mutation (Baart, 1999a; Baart and Sagar, 2004) (5)

	Base		Inflected	
Masc.	la:r	house	læ:r	Fem.
	bana:l	'pasture'	bænæ:l	i
	manuț	'person'	mænuţ	e 🗧
Fem	údʒ	'lie' (f)	îdʒ	
	tæro:r	'sparrow'	tjære:r	æ
	lumaț	'stick'	lumeț	

- i [-back,+high,-low] u [+back,+high,-low]
- e [-back,+high,+low] o [+back,+high,+low] æ [-back,-high] a [+back,-high,-low]
- \rightarrow Underspecification of /\varepsilon/: realized as $[\varepsilon, \lambda]$, or $[\vartheta]$; mirrors the analysis in Baart (1999*a*) based on element theory.

	Masc	Fem	
_	-back	-back -con	+high

- \rightarrow different vowel mutation patterns (\pm affecting height)
- \rightarrow different locality conditions (\pm affecting all V's) since the morphemes are of **different complexity**: the floating V feature [-back] spreads through the word; the floating feature complex with a segmental root node associates locally.
- \rightarrow different targets (\pm high V) follow from different complexity as well: underlying [+high] V's are preserved; but if underlying [+high] is overwritten by affix, this faithfulness constraint is not decisive anymore

Appendix: Constraints and full tableaux

1. Constraints

(defined in terms of coloured containment-theoretic OT where deletion of phonological elements and association lines is impossible (McCarthy and Prince, 1995; van Oostendorp, 2006; Trommer, 2011; Trommer and Zimmermann, 2014; Zimmermann, 2014))

- (1) a. $MaxL_A$ (parallel: $MaxH_A$ and $Max\mu_A$)

 Assign a violation mark for every affix L-tone that is not dominated by the highest prosodic node via an uninterrupted path of phonetically visible association lines.
 - MAXL_S (parallel: MAXH_S and MAXµ_S)
 Assign a violation mark for every stem L-tone that is not dominated by the highest prosodic node via an uninterrupted path of phonetically visible association lines.
 - c. $Max(T-\mu)_A$ Assign a violation mark for an association line between an affix- μ and an affix-tone that is marked as phonetically invisible.
 - Assign a violation mark for an association line between a stem-μ and a stem-tone that is marked as phonetically invisible.
 - MAXH_{8σ}
 Assign a violation mark for every phonetically inivisible H that is associated to the first syllable.
- (2) a. $^*\sigma_{^{c}2\mu}$ Assign a violation mark for every syllable phonetically associated to more than two μ 's.
 - Assign a violation mark for every μ that is phonetically visibly associated to an L-tone.
 - *LHL Assign a violation mark for every phonetically visible sequence LHL.
 - . NoCross Given the phonetically visible elements A and B on tier n and α and β on tier n-1 and A precedes B and α precedes β : assign a violation mark if A is phonetically associated to β and B to α .
 - e. Alt
 Assign a violation mark for every association line that links two elements of colour α that has not the colour α.
 - Assign a violation mark for every tone that is phonetically dominated by two highest root nodes. Where 'root node' is defined as a node that is not dominated by a higher node.

2. Tableaux

2.1. V-final bases

(3) Monosyllabic L-toned base: long final V and only H

g	$\begin{array}{ccc} L & H_x L_x \\ \begin{matrix} \downarrow & \downarrow \\ \mu & + & \mu_x \end{matrix}$	*σ<2μ	Max(T-μ) _A	ONERT	NoCROSS	*LHL	ALT	$MaxH_{\#\sigma}$	Махиѕ	Махиа	$MaxH_A$	MaxLa	7.	$Max(T\text{-}\mu)_S$	MaxHs	MaxLs
a.	$\begin{array}{c c} L & H_x L_x \\ \downarrow & \downarrow \\ \mu & \mu_x \end{array}$ g o [gò]				1				1	*!	 	*	*			
b.	$\begin{array}{c c} L & H_x & L_x \\ \mu & \mu_x \\ \vdots & \vdots \\ g & o \\ [g \check{o} :] \end{array}$			 	 		 				 	*	*!		 	
™ C.	$\begin{array}{c c} L & H_x \\ + & \vdots \\ \mu & \mu_x \\ \vdots \\ g & o \\ [gó:] \end{array}$				1							*		*		*
d.	L H _x L _x				 	 			 	*!	 		*	*		*
e.	$\begin{array}{c} L H_x L_x \\ \mid + \vdots \\ \mu \mu_x \\ \mid \vdots \\ g o \\ [go:] \end{array}$		*!		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		*!		1		 		**			

(4) Polysyllabic L-initial base: long final V and only H

d	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	*0<2µ	Max(T-μ) _A	ONERT	NoCross	*LHL	ALT	$MaxH_{\#\sigma}$	Махиѕ	Махиа	MaxH _A	MaxLa	,T	$Max(T\text{-}\mu)_S$	MaxHs	MaxLs
a.	$\begin{array}{c cccc} L & H & H_x & L_x \\ \mu & \mu & \mu & \mu_x \\ d & a & r & a \\ & & & [d\grave{a}:r\acute{e}:] \end{array}$			 	 	1	 	 		*!	*!	*	*		 	
b.	L HH _x L _x d a r a [dà:ré:]			 	 	 	 	 			 	*	*!*			
IS C.	L HHx Lx			 	 	 	 	 			 	*		***	 	*
d.	L H H _x L _x μ μ μ μ _x d a r a [dà:rê:]		*!	 	 	 	*!				 		***	*	 * * 	
e.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				 *! *!	1							***		 	

2.2. C-final bases

(5) Polysyllabic L-initial base with H on second syllable: all L

	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	*σ<2μ	Max(T-μ) _A	ONERT	NoCross	*LHL	ALT	MaxH# _{\sigma}	Махиѕ	Махµа	MaxHa	MaxLa	T.	$Max(T\text{-}\mu)_S$	MaxHs	MaxLs
a.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				 	1 1 1 1 1 1	 	1 1 1 1 1 1	 	*	 * * 	*!	*		1 1 1 1 1 1	
b.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	*!			 	 	 	 	 			*	*			
c.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				 	 	 	 	*! *!		 	*	*		 	
d.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					 *! 	! ! ! ! !	 	 	*	 		**	*	 	
™ e.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				 	 	 	 	 	*	 		***	**	 	
f.	$\begin{array}{c cccc} L & H & H_x \ L_x \\ \downarrow & \mu & \mu & \mu_x \\ b & o & b & a \\ & [b\acute{o}b\grave{a}] \end{array}$			*!	 	 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 	 	*			**	***	 	*
g.	$\begin{array}{c cccc} L & H & H_x \ L_x \\ \downarrow & \mu & \mu & \mu_x \\ b & o & b & j \\ b & b & b & j \end{array}$		*!		 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 	1 1 1 1 1 1 1 1 1 1	 	*	 		**	***	 	*

(6) Monosyllabic L-toned base: final falling contour

	$ \begin{array}{cccc} H & H_x L_x \\ \mu & \mu & + \mu_x \end{array} $	*σ<2μ	Max(T-μ) _A	ONERT	NoCross	*LHL	ALT	MaxH _# _{\sigma}	Махµѕ	Махµа	MaxHa	MaxLa	T	Max(T-µ)s	MaxHs	MaxLs
a.	$ \begin{array}{ccc} H & H_x L_x \\ \mu & \mu_x \\ b & o r \\ [box] \end{array} $		 			 	 	 	 	*	* * 	*!			 	
b.	H H _x L _x b o f	*!	 	 	 	 	 	 	 			*			 	
c.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		 	 	1 1 1 1 1 1	 	 	 	· *!			*			 	
r≋ d.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			 	 	 	 	 		*	*		*	*	 	

(7) Monosyllabic LH-base: no change

	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	*0<2µ	$Max(T-\mu)_A$	ONERT	NoCross	*LHL	ALT	MaxH _#	Махиѕ	Махиа	MaxHA	MaxLa	1	$\mathrm{Max}(T\text{-}\mu)_S$	MaxHs	$MaxL_S$
r≋ a.	$\begin{array}{c c} L & H & H_x \ L_x \\ \downarrow & \downarrow & \downarrow L_x \\ b & a & g \\ b & a & g \end{array}$		1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	 		 	 	*	 	*	*			
b.	$\begin{array}{c c} L & H & H_x L_x \\ & \dagger & \vdots \\ & \mu & \mu \\ & \mu \\ b & a \\ & b \\ a & g \\ \\ b \\ a \\ b \end{array}$		 	 	 	 	 	 *!	 	*	 		**	*	 	
c.	$\begin{array}{c cccc} L & H & H_x L_x \\ & \vdots & \vdots & \vdots \\ \mu & \mu & \mu_x \\ b & a & g \\ [b \hat{a} g] \end{array}$		1 1 1 1 1 1		 	1 1 1 1 1 1	*!	 		*	 		*	**		*

References

- Baart, Joan L. G. (1999a), A sketch of Kalam Kohistanti grammar, National Inst. of Pakistan Studies, Islamabad.
- Baart, Joan L. G. (1999b), 'Tone rules in Kalam Kohistani (Garwi, Bashkarik)', Bulletin of the School of Oriental and African Studies 62, 88–104.
- Baart, Joan L. G. (2004), 'Contrastive tone in Kalam Kohistani', Linguistic Discovery 2, 1-20.
- Beckman, Jill (1998), Positional Faithfulness, PhD thesis, University of Massachusetts at Amherst. Lieber, Rochelle (1992), *Deconstructing Morphology*, Chicago: University of Chicago Press.
- McCarthy, John and Alan Prince (1995), Faithfulness and reduplicative identity, *in J. Beckman*, L.Dickey and S.Urbanczyk, eds, 'UMOP', GLSA, Amherst, MA, pp. 249–384.
- Trommer, Jochen (2011), 'Phonological aspects of Western Nilotic mutation morphology', Habil. University of Leipzig.
- Trommer, Jochen and Eva Zimmermann (2014), 'Generalised mora affixation and quantity-manipulating morphology', *Phonology* 31, 463–510.
- van Oostendorp, Marc (2006), 'A theory of morphosyntactic colours', Ms., Meertens Institute, Amsterdam, available online at http://egg.auf.net/06/docs/Hdt
- van Oostendorp, Marc (2007), Derived environment effects and consistency of exponence, *in* S.Blaho, P.Bye and M.Krämer, eds, 'Freedom of Analysis?', Mouton de Gruyter, Berlin, pp. 123–148.
- van Oostendorp, Marc (2012), 'Stress as a proclitic in Modern Greek', *Lingua* **122**, 1165–1181.
- Wolf, Matthew (2007), For an autosegmental theory of mutation, in L.Bateman, M.O'Keefe, E.Reilly, and A.Werle, eds, 'UMOP 32: Papers in Optimality Theory III', GLSA, Amherst, MA, pp. 315–404.
- Zimmermann, Eva (2014), A phonological account of morphological length, PhD thesis, Leipzig University.

Eva Zimmermann (Leipzig University) Eva.Zimmermann@uni-leipzig.de