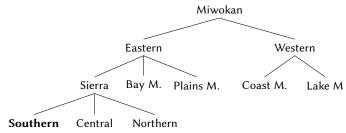
Templates as affixation of segment-sized units: the case of Southern Sierra Miwok

Eva Zimmermann (University of Leipzig)

The 38th Meeting of the Berkeley Linguistic Society

February 12, 2012


Main Claim

- templatic effects in Southern Sierra Miwok (SSM) follow from affixation of moras and underspecified segments
- this avoids the assumptions of a syllabified X-Slots representation a previous analysis of SSM argue for (Sloan, 1991)

Affixation of segment-sized phonological elements predicts 'templatic effects' over whole strings of segments

Southern Sierra Miwok

(1) Miwokan (Penutian) family tree

- 7 speaker in 1994 (Hinton 1994)
- described in Freeland (1951) and Broadbent (1964)
- analyses of lengthening phenomena in Sloan (1991), Brown (2004)

'Templates' in SSM

(2) a. hal:ik-iH-h:Y-? 'he used to hunt'

(Sloan 1991, pp.152-154)

- b. halik-meh-nY-haHk-te-?
 - 'I was hunting on my way'
- c. halki-paH
 - 'a good hunter'
- d. haːlik-teː-nY
 - 'to hunt along the trail'

 many suffixes in SSM require that the roots to which they attach must conform to a particular shape: template-requiring affixes (cf. also Yawelmani, e.g. Archangeli 1984,1991)

Templates-requiring affixes

(3) Examples for template-requiring affixes

Suffix	Gloss	Template requirement
-h	'transitional'	CVC
-ksY		CVCV
-IVmh	'to be ready to'	CVCCV
-iH	'habitual'	CVC:VC
-pa		CVCV:C
-ny		CV:CVC
-peH	'agentive'	CVCVC
-j	'verbalizer'	CVCV:

Three classes of LH-requiring affixes

(Sloan 1991, pp.172-177)

(4) Affix -peH 'agentive'

> halik-peH 'hunter' a. b. ?okoj-peH 'a nurse' liwa?-peH 'speechmaker' → CVCVC

d. koto?-peH 'guide'

(5) Affix -t 'to do what is characteristic of ...'

> wyliz-t 'to flash, of lightening' a.

b. paTy:-t 'to take, accept'

pulu:-t C. 'to dip up'

molix-t d. 'shade'

(6) Affix -na 'benefactive'

> kojow-na 'to tell for someone' a. h. hekaː-na 'to clean for someone'

c. juwal-na 'to stir for someone'

d. TeTy:-na 'to gather for someone'

class I

class II

→ CVCV:

class III → CVCVC or

CVCV:

Three classes of LH-requiring affixes (Broadbent 1964, Sloan 1991

(7) LH templates: examples

		followed by	followed by	followed by							
		class I affix	class II affix	class III affix							
	Biconsonantal stems										
a.	liw:a	liwa?	liwaː	liwa:							
b.	pelːe	pele?	peleː	peleː							
c.	koːl	kolu?	koluː	koluː							
		Three-conso	onantal stems								
e.	wylizp	wylip	wylix	wylip							
f.	halki	halik	haliː	halik							
g.	wyks	wykys	wyky:	wykys							

degemination, vowel shortening, consonant deletion, insertion of /y/ or /?/, vowel lengthening or CV metathesis apply to ensure that the stem conforms to the templatic requirement

Various strategies to achieve LH template

(8) Phonological changes

exa	mple		meta.	+ 3	+ y	short.	C-del.	leng.	degem.
a.	?amla	?amal (I)	✓	Х	Х	Х	Х	Х	Х
b.	wyks	wykys (I)	Х	Х	1	Х	Х	Х	Х
c.	wylizp	wylip (I)	Х	Х	Х	✓	Х	Х	Х
d.	helarj	helaː (II)	Х	X	Х	Х	✓	X	X
e.	hekɪa	heka? (I)	Х	1	X	Х	Х	X	✓
f.	horja	hoja? (I)	Х	Х	1	✓	Х	Х	Х
g.	polat	pola: (II)	Х	Х	Х	Х	1	1	Х
h.	hekɪa	hekaː (II/III)	Х	X	X	Х	Х	1	1
i.	cyɪm	cymy? (I)	Х	1	1	✓	Х	X	Х
j.	cyɪm	cymy: (II)	Х	X	1	1	X	1	Х
k.	pult	pulu: (III)	X	Х	1	Х	✓	✓	X

Three LH templates in SSM

(9) The three LH templates

	biconsonantal stem	three-consonantal stem
class I requires	CV.CVC	CV.CVC
class II requires	CV.CV:	CV.CV:
class III requires	CV.CV:	CV.CVC

Representing the three LH templates?

 in standard moraic theory, light (μ) and heavy (μμ) syllables are distinguishable but the difference between heavy CVC and CV: cannot be coded

The analysis in Sloan (1991)

- the need to distinguish C- and V-final stems (class I/II) is taken as an argument for X-Slot theory (Levin 1985): neither CV theory (McCarthy 1979, Marantz 1982) nor standard moraic theory (Hayes 89) is able to represent this adequately
- and the LH templates are represented as (partially) syllabified sequences of X-Slots

(10) LH templates: representation in Sloan (1991)

CVCVC	CVCV:	CVCVX		
σ σ	σ σ	σ σ		
R R N N N N N N N N N N N N N N N N N N	R R R N N N X X X X X X X	R R R N N N N N N N		

Avant: lambic lengthening

(Callaghan 1978, Hayes 1995)

- main stress in SSM is always on the first heavy syllable and must be on the first or second
- only heavy syllables are stressable

LH templates as affixation of segment-sized units

- Prefixation of a μ moraic overwriting: the first syllable is light
- Suffixation of defective C/V segments in class I/II defective segments specified as C or V must be realized stem-final

A prefixed μ ...

- affixation of moras is proposed in various analyses of non-concatenative morphology
 (e.g. Davis&Ueda 2002, Grimes 2002, Seiler 2008 or Zimmermann&Trommer 2010)
- must be realized at the left edge of the stem,
 i.e. dominate the first vowel

A prefixed μ ...

is the only possible μ in a syllable:

(11)DEPLINK-µ]_o (e.g. Morén 1999 for DepLinku) Assign a violation mark for every inserted association line between μ and a segment that is not at the right edge of a syllable.

(=DL]

- 'inserted' = an association line that was not present in the input
- this faithfulness constraint demands that modifications of the prosodic structure are preferred at the right edge of a syllable
 - **→** prominence by position

Constraints ensuring realization of μ

Max-μ

Assign a violation mark for every $\boldsymbol{\mu}$ in the input without an output correspondent.

 $Max\text{-}\mu_{AF}$

Assign a violation mark for every affix μ in the input without an output correspondent.

Prefixation of a mora

(12)Moraic Overwriting

	(μ) μ μ μ h o j a + p e H	Max-μ _{Af}	DL]	Мах-µ
a.	μ μ μ h o j a p e H	*!	 	*
b.	μ μ μ h o j a p e H		*!	
(№) c.	μ μ μ h o j a p e H		 	*

(underlyingly unassociated μ are circled)

Constraints responsible for iambic lengthening

ALL-FT-L (McCarthy&Prince 1993)

Assign a violation mark for every left edge of a foot that is not aligned with the left edge of a prosodic word.

RHT:I (Kager 1993)

Assign a violation mark for every foot with non-final prominence.

STRESS-TO-WEIGHT (Kager 1999)

Assign a violation mark for every stressed syllable that is not heavy (= 2μ).

DEP- μ (e.g. Morén 1999)

Assign a violation mark for every μ in the output that has no input correspondent.

Parse-σ (Prince&Smolensky 1993, McCarthy&Prince 1993)

Assign a violation mark for every syllable that is not parsed into a foot.

lambic Lengthening

... and if the first σ is light, the second is necessarily heavy!

(13)*lambic Lengthening in SSM*

			I	Stress-to		l
μ+	- hojapeH	ALL-FT-L	RHT:I	WEIGHT	Dep-μ	Prs-σ
a.	ho ^μ (ja.péH)	*!	l	*		*
b.	(hó ^µ .ja)peH		*!	*		*
c.	(ho ^µ .já)peH		ı	*!		*
d.	(hóːμ)ja.peH		l	İ	*	**!
™ e.	(ho ^µ .jáː)peH		l I		*	*

(if an underlyingly unassociated μ links to an output segment: notated as X^{μ})

 defective segmental root nodes are assumed to result in mutation, reduplication or insertion

```
(e.g. Bye&Svenonius to appear, Bermúdez-Otero to appear)
```

• in SSM, they have a minimal feature specification characterizing them as either obstruents/sonorants/glides or as vowel

```
(14) [+vocalic] (Padgett 2007, Nevins&Chitoran 2008) =Absence of a narrow constriction among the articulators
```

```
 (15) \quad \begin{array}{lll} \textit{Natural classes given } [\pm cons] \ and \ [\pm + vocalic] & \text{(Nevins\&Chitoran 2007)} \\ & \text{obstruents} & [\pm cons][-voc][-son] & \\ & \text{liquids, nasals} & [\pm cons][-voc][+son] & \\ & \text{vowels} & [-cons][+voc][+son] & \\ & \text{glides} & [-cons][-voc][+son] & \\ & \text{illicit} & * & [\pm cons][+voc] & \\ \end{array}
```

 specifications for the missing features are required by constraints like HAVEPLACE

Example: Representation for suffix class I /-pet/ (16)

⇒ abbreviated as: [-voc]

are realized

	as underspecified	
	default segment, or	as fused segment
	• _X	• _X
	h ₁ o ₂ j ₃ a ₄ + ^[-voc]	$p_1o_2l_3a_4t_5 + [-voc]$
	\	\
	$h_1o_2j_3a_4?_x$	$p_1o_2I_3a_4t_{5,x}$
violates:	e.g. HavePlace	Uniformity

are part of the following suffix and must be realized at the right edge of the stem

O-Contiguitiy (=O-Cont) (17)(Landmann 2002) Assign a violation mark for every instance where phonological portions in the output that belong to the same morpheme do not form a contiguous string. ('No M-internal insertion.')

Constraints responsible for iambic lengthening

 $Max-S_{AF}$

Assign a violation mark for affix segment in the output without an input correspondent.

IDENT-[VOCALIC] (=ID-[VOC])

(McCarthy&Prince 1995+1999)

Assign a violation mark if an input segment corresponds to an output segment with a different value for $[\pm voc]$.

HavePlace (=HavPl)

(e.g. Padgett 1995, McCarthy 2008)

Assign a violation mark for every segment that has no place specification.

UNIFORMITY (=UNIF)

(McCarthy)

Assign a violation mark for every output segment that corresponds to more than one input segment.

Demand to end in a C: realization of a default segment

(18)Realization of a defective C

$\mu + h_1 o_2 j_3 a_4 + \begin{bmatrix} \bullet_x \\ [-voc] \end{bmatrix} p_y e_z$	Max-S _{AF}	O-Cont	ID-[voc]	HavPl	Unif
a. $h_1 o_2^{\mu}.j_3 \acute{a}!_4.p_y e_z$	*!	l	l		
b. $h_1 o_2^{\mu}.j_{3,x} \acute{a} i_4.p_y e_z$		*!			*
c. $h_1 o_2^{\mu}.j_3 \acute{a} i_{4,x}.p_y e_z$		 	*!		*
$rac{1}{2}$ d. $h_1 o_2^{\mu} . j_3 \acute{a}_4 ?_x . p_y e_z$				*	

3.2. Satisfaction of the templatic requirement

Different phonological strategies apply to ensure satisfaction of the templatic requirement

Summarizing the ranking

(19)

Moraic Overwriting results in LH

		,					
	Stress-to						
μ + hekːa		ALL-FT-L	RHT:I	WEIGHT	Max-μ _{AF}	DL]	Dep-μ
a.	hekːa		l I	l	*!	l	
b.	he ^µ ka		 	*!	l I	l I	
™ C.	he ^µ kaː		1	I	I	I	*

Summarizing the ranking

(20)

C/V must be realized in final position

$\mu + \text{hoja} + \begin{bmatrix} -\text{voc} \end{bmatrix} \text{ peH}$	LH	Max-S _{AF}	O-Cont	lp[voc]	HavPl	Unif
a. ho ^µ japeH		*!		l		
b. ho ^μ j _x apeH			*!	l		*
c. ho ^µ ja _x peH			 	*!		*
r d. ho ^μ ja? _x peH					*	*

Example I: Insertion of /y/

(21) wyks realized as wykys before class I suffix

	• _X		1			 	1
$\mu + \mathbf{w} \mathbf{y}$	ks + ^[-voc] kuH	LH	C/V	HavPl	Unif	Max-C	Lin
	wýks.kuH	Max!	Max			l	l I
b.*	wý ^µ ks. _x kuH	DL]!	 		*	l	
C.	wý ^µ k.sy? _x .kuH	DL]!	 	**		 	
r d.	wy ^µ .kýs. _x kuH		l	*	*		1

(Note that CCC cluster are independently impossible in SSM)

Example II: metathesis

?amla realized as ?amal before class I suffix (22)

• _X		l			I	ı
μ + ?amla + [-voc] kuH	LH	C/V	HavPl	Unif	Max-C	Lin
a. ?á ^µ m.l _x a.kuH	DL]!	Cont		*	I	l
b. ʔá ^µ .l _x a. <mark>kuH</mark>	StW!	Cont!		*	l	l I
c. ʔá ^µ .laʔ _x .kuH		l I	*!		*	l I
r d. ?a ^μ .mál _x .kuH		 		*	1	*

Example III: Shortening, insertion of /y/ and /?/

(23)cy:m realized as cymy? before class I suffix

$\mu + cy:m + \frac{\bullet_x}{[-voc]} kuH$	LH	C/V	HavPl	Unif	Max-C	Lin
a.* cýː̥ʰmҳ.kuH	DL]!	l		*	l	
b. cý ^µ m _x .kuH	DL]!	l I		*	l	I
c. cy ^µ .m _x ý.kuH	StW]!	Cont!	*	*		l I
r d. cy ^μ .mý? _x .kuH			**			l

(*CV:C syllables are independently impossible in SSM)

Example IV: C-Deletion

(24)hela: j realized as hela: before class II suffix

$\mu + \text{helax}j + \frac{\bullet_x}{[+\text{voc}]}t$	LH C/V	HavPl	Unif	Max-C	Lin
a. he ^μ .laː _x jt	Cont!		*		l
b. he ^µ .laːj _x t	Id!		*		i
r c. he ^μ .laː _x t	!		*	*	I

Lengthening suffixes in SSM

- recall that DepLink-μ] results in overwriting if a μ is prefixed
- but there are actually affixes that trigger lengthening, i.e. where a μ is apparently added to the stem!

(25) Lengthening suffixes in SSM

(Bradbent 1964:48, 106)

- a. ?enup-tenite-??enuptenite?'I chased you'
- b. kel:a-na-:me? kel:ana:me? 'It snowed on us'

Lengthening suffixes in SSM

(26) A floating μ in the representation of a lengthening suffix

	μ (μ μ u p + e n	Max-µ _{AF}	l	Max-µ
a.	μ μ u p e n	*!	 	*
☞ b.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		 	
c.	μ 		 	*!

Moraic prefixes overwrite and moraic suffixes lengthen

		Max-μ _{AF}	DL]	Мах-µ	
Lengthening					
a.	μ μ upen	*!	! 	*	
rs b.	$\begin{array}{cccc} \mu \stackrel{\textstyle (\mu)}{\longrightarrow} \mu \\ & \mid & \mid & \mid \\ \dots u & p & e & n \end{array}$		 		
c.	μ μ u p e n		 	*!	
	Overwri	ting			
a.	μ μ μ 	*!	 	*	
b.	μ μ μ h o j a p e H		*!		
₽\$ C.	μ μ μ 		 	*	

(27)

Conclusion

- templatic effects in Southern Sierra Miwok (SSM) are the consequence of the affixation of moras and underspecified segments
- this analysis is based exclusively on the affixation of segment-sized units and avoids the assumptions of syllabified X-Slot positions in the representation of morphemes
- this unifies analysis for templatic effects with the analysis of other lengthening phenomena in the language that are based on the assumption of floating moras as well

References

- Archangeli, Diana (1984), Underspecification in Yawelmani Phonology and Morphology, PhD thesis, MIT. Archangeli, Diana (1991), 'Syllabification and prosodic templates in Yawelmani', Natural Language and Linguistic Theory 9, 231-284.
- Bermúdez-Otero, Ricardo (to appear), The architecture of grammar and the division of labour in exponence, in J.Trommer, ed., 'The morphology and phonology of exponence: the state of the art', Oxford University Press, Oxford.
- Broadbent, Sylvia (1964), The Southern Sierra Miwok Language, University of California Press.
- Brown, J.C. (2003), Floating moras and features in Southern Sierra Miwok, in 'Proceedings from the sixth Workshop on American Indigenous Languages'.
- Bye, Patrick and Peter Svenonius (to appear), Non-concatenative morphology as epiphenomenon, in J.Trommer, ed., 'The morphology and phonology of exponence: the state of the art', Oxford University Press, Oxford.
- Callaghan, Catherine (1987), Northern Sierra Miwok Dictionary, University of California Press.
- Davis, Stuart and Isao Ueda (2002), 'The typology of mora augmentation', Online availabe at: http://wata-net.com/proceedings/IsaoUeda/DavisandUeda2.pdf. Hayes, Bruce (1989), 'Compensatory Lengthening in moraic phonology', LI 20, 253-306.
- Hayes, Bruce (1995), Metrical Stress Theory: principles and case studies, University of Chicago Press, Chicago.
- Hinton, Leanne (1994), Flutes of fire, Essays on California Indian Languages, Heyday Books.

References

- Ito, Junko and Armin Mester (1993), 'Licensed segments and safe paths', Canadian Journal of Linguistics 38(2), 197-213. Special issue of the Canadian Journal of Linguistics.
- Kager, René (1999), Optimality Theory, Cambridge University Press, Cambridge.
- Landman, Meredith (2002), Morphological contiguity, in A.Carpenter, A.Coetzee and P.de Lacy, eds, 'Papers in Optimality Theory II: University of Massachusetts-Amherst Occasional Papers in Linguistics', GLSA, Amherst, MA.
- Levin, Juliette (1985), A Metrical Theory of Syllabicity, PhD thesis, MIT, Cambridge, Mass. Marantz, Alec (1982), 'Re reduplication', Linguistic Inquiry 13, 483-545. McCarthy, J. (1979), Formal Problems in Semitic Phonology and Morphology, PhD thesis, Massachusetts Institute of Technology.
- McCarthy, John and Alan Prince (1995), Faithfulness and reduplicative identity, in L. W. D.Jill N. Beckman and S.Urbanczyk, eds, 'University of Massachusetts Occasional Papers in Linguistics', pp. 249-384.
- McCarthy, John and Alan Prince (1999), Faithfulness and identity in prosodic morphology, in R.Kager, H.van der Hulst and W.Zonneveld, eds, 'The prosody-morphology interface', Cambridge: Cambridge University Press, pp. 218-309.
- Morén, Bruce Timothy (1999), Distinctiveness, Coercion and Sonority: A unified Theory of Weight, PhD thesis, University of Maryland at College Park.
- Nevins, Andrew and Iona Chitoran (2008), 'Phonological representations and the variable patterning of glides', Lingua 118, 1979-1997. Padgett, Jaye (1994), 'Stricture and nasal place assimilation', Natural Language and Linguistic Theory 12, 463-513.

References

- Padgett, Jaye (2007), 'Glides, vowels and features', Lingua 118, 1937-1955.
- Prince, Alan (1990), Quantitative consequences of rhythmic organization, in M.Ziolkowski, M.Noske and K.Deaton, eds, 'Parasession on the Syllable in Phonetics and Phonology', Chicago Linguistic Society, Chicago, pp. 355-398.
- Seiler, Guido (2008), 'How to do things with moras: variation and change of quantity alternations across Upper German dialects', Paper presented at the International Morphology Meeting, Vienna.
- Sloan, Kelly Dawn (1991), Syllables and Templates: Evidence from Southern Sierra Miwok, PhD thesis, MIT.
- Trommer, Jochen and Eva Zimmermann (2010), 'Generalized mora affixation', talk given at the 18th Manchester Morphology Meeting, Manchester, 20th-22th May 2010.