Templates as affixation of segment-sized units: the case of Southern Sierra Miwok

Eva Zimmermann (University of Leipzig)

The 38th Meeting of the Berkeley Linguistic Society

February 12, 2012

Main Claim

- templatic effects in Southern Sierra Miwok (SSM) follow from affixation of moras and underspecified segments
- this avoids the assumptions of a syllabified X-Slots representation a previous analysis of SSM argue for (Sloan, 1991)

Affixation of segment-sized phonological elements predicts 'templatic effects' over whole strings of segments

Southern Sierra Miwok

(1) Miwokan (Penutian) family tree

- 7 speaker in 1994 (Hinton 1994)
- described in Freeland (1951) and Broadbent (1964)
- analyses of lengthening phenomena in Sloan (1991), Brown (2004)

‘Templates’ in SSM

a. hal:ik-iH-h:Y-?
'he used to hunt'
b. halik-meh-nY-haHk-te-?
'I was hunting on my way'
c. halki-paH
'a good hunter'
d. ha:lik-te:-nY
'to hunt along the trail'

- many suffixes in SSM require that the roots to which they attach must conform to a particular shape: template-requiring affixes (cf. also Yawelmani, e.g. Archangeli 1984,1991)

Templates-requiring affixes

(3) Examples for template-requiring affixes

Suffix	Gloss	Template requirement
-h	'transitional'	CVC
- -ksY		CVCV
- IVmh	'to be ready to...'	CVCCV
-iH	'habitual'	CVC:VC
-pa		CVCV:C
-ny		CV:CVC
-peH	'agentive'	CVCVC
$-j$	'verbalizer'	CVCV:

Three classes of LH-requiring affixes

(4) Affix -peH 'agentive’
a. halik-peH
b. Rokoj-peH
c. liwa?-peH
d. koto?-peH
'hunter'
'a nurse'
'speechmaker'
'guide’
(5) Affix -t to do what is characteristic of ...'
a. wyli:-t
b. paTy:-t
c. pulu:-t
d. moli:-t
'to flash, of lightening'
'to take, accept'
'to dip up'
'shade'
(6) Affix -na 'benefactive'
a. kojow-na
b. heka:-na
c. juwal-na
d. TeTy:-na
'to tell for someone'
'to clean for someone'
'to stir for someone'
'to gather for someone'

Three classes of LH-requiring affixes

(7) LH templates: examples
\($$
\begin{array}{|l|l|l|l|}\hline & & \begin{array}{l}\text { followed by } \\
\text { class I affix }\end{array} & \begin{array}{l}\text { followed by } \\
\text { class II affix }\end{array}\end{array}
$$ \begin{array}{l}followed by

class III affix\end{array} \left\lvert\,\)| Biconsonantal stems | | | |
| :--- | :--- | :--- | :--- |
| a. liw:a | liwa? | liwa: | liwa: |
| b. | pel:e | $\begin{array}{l}\text { pele? } \\ \text { c. } \\ \text { ko:l }\end{array}$ | $\begin{array}{l}\text { pele: } \\ \text { kolu? }\end{array}$ | \(\left.\begin{array}{l}pele:

kolu:\end{array}\right.\right]\)

- degemination, vowel shortening, consonant deletion, insertion of /y/ or $/ R /$, vowel lengthening or CV metathesis apply to ensure that the stem conforms to the templatic requirement

Various strategies to achieve LH template

(8) Phonological changes

example		meta.	$+?$	+	short.	C-del.	leng.	degem.
a.	Pamla	Pamal (I)	\checkmark	X	X	X	X	X
b.	wyks	wykys (I)	X	X	\checkmark	X	X	X
c.	wyli:p	wylip (I)	X	X	X	\checkmark	X	X
d.	hela:j	hela: (II)	X	X	X	X	\checkmark	X
e.	hek:a	heka? (I)	X	\checkmark	X	X	X	X
f.	ho:ja	hoja? (I)	X	X	\checkmark	\checkmark	X	X
g.	polat	pola: (II)	X	X	X	X	\checkmark	\checkmark
h.	hek:a	heka: (II/III)	X	X	X	X	X	\checkmark
i.	cy:m	cymy? (I)	X	\checkmark	\checkmark	\checkmark	X	X
j.	cy:m	cymy: (II)	X	X	\checkmark	\checkmark	X	\checkmark
k.	pult	pulu: (III)	X	X	\checkmark	X	\checkmark	\checkmark

Three LH templates in SSM

(9) The three LH templates

	biconsonantal stem	three-consonantal stem
class I requires	CV.CVC	CV.CVC
class II requires	CV.CV:	CV.CV:
class III requires	CV.CV:	CV.CVC

Representing the three LH templates?

- in standard moraic theory, light (μ) and heavy ($\mu \mu$) syllables are distinguishable but the difference between heavy CVC and CV: cannot be coded

The analysis in Sloan (1991)

- the need to distinguish C- and V-final stems (class I/II) is taken as an argument for X-Slot theory (Levin 1985): neither CV theory (McCarthy 1979, Marantz 1982) nor standard moraic theory (Hayes 89) is able to represent this adequately
- and the LH templates are represented as (partially) syllabified sequences of X-Slots
(10) LH templates: representation in Sloan (1991)

Avant: Iambic lengthening

- main stress in SSM is always on the first heavy syllable and must be on the first or second
- only heavy syllables are stressable

LH templates as affixation of segment-sized units

(1) Prefixation of a μ moraic overwriting: the first syllable is light
(2) Suffixation of defective C / V segments in class I/II defective segments specified as C or V must be realized stem-final

A prefixed $\mu . .$.

- affixation of moras is proposed in various analyses of non-concatenative morphology
(e.g. Davis\&Ueda 2002, Grimes 2002, Seiler 2008 or Zimmermann\&Trommer 2010)
- must be realized at the left edge of the stem, i.e. dominate the first vowel

A prefixed $\mu \ldots$

- is the only possible μ in a syllable:
(11) DepLink- $\mu]_{\sigma}$ (e.g. Morén 1999 for DepLinku)

Assign a violation mark for every inserted association line between μ and a segment that is not at the right edge of a syllable.

- 'inserted' = an association line that was not present in the input
- this faithfulness constraint demands that modifications of the prosodic structure are preferred at the right edge of a syllable
\Rightarrow prominence by position

Constraints ensuring realization of μ

Max- μ

Assign a violation mark for every μ in the input without an output correspondent.
$M A X-\mu_{A F}$
Assign a violation mark for every affix μ in the input without an output correspondent.

Prefixation of a mora

(12) Moraic Overwriting

	MAX- $\mu_{\text {AF }}$	DL]	Max- μ
a.	*!		*
b.		*!	
			*

(underlyingly unassociated μ are circled)

Constraints responsible for iambic lengthening

All-Ft-L
(McCarthy\&Prince 1993)
Assign a violation mark for every left edge of a foot that is not aligned with the left edge of a prosodic word.

RнT:I

(Kager 1993)
Assign a violation mark for every foot with non-final prominence.
Stress-to-Weight
(Kager 1999)
Assign a violation mark for every stressed syllable that is not heavy $(=2 \mu)$.
Dep- μ
(e.g. Morén 1999)

Assign a violation mark for every μ in the output that has no input correspondent.

Parse- σ
(Prince\&Smolensky 1993, McCarthy\&Prince 1993)
Assign a violation mark for every syllable that is not parsed into a foot.

lambic Lengthening

\ldots and if the first σ is light, the second is necessarily heavy!
(13) Iambic Lengthening in SSM

$\mu+$ hojapeH	All-Ft-L	RнT:I	Stress-to	Dep- μ	$\text { Prs- } \sigma$
			Weight		
a. $\mathrm{ho}^{\mu}(\mathrm{ja.péH})$	*!		*		*
b. (hó $\left.{ }^{\mu} . j a\right) p e H$		*!	*		*
c. (ho ${ }^{\mu} . j a^{\prime}$)peH			*!		*
d. (hó: ${ }^{\mu}$)ja.peH				*	**!
e. (ho ${ }^{\mu}$.já:) peH				*	*

(if an underlyingly unassociated μ links to an output segment: notated as X^{μ})

Defective C/V nodes...

- defective segmental root nodes are assumed to result in mutation, reduplication or insertion
(e.g. Bye\&Svenonius to appear, Bermúdez-Otero to appear)
- in SSM, they have a minimal feature specification characterizing them as either obstruents/sonorants/glides or as vowel
(14) [+vocalic]
(Padgett 2007, Nevins\&Chitoran 2008)
$=A b s e n c e ~ o f ~ a ~ n a r r o w ~ c o n s t r i c t i o n ~ a m o n g ~ t h e ~ a r t i c u l a t o r s ~$
(15) Natural classes given [\pm cons] and [$\pm+$ vocalic]
(Nevins\&Chitoran 2007)

obstruents	$[+$ cons $][-\mathrm{voc}][-$ son $]$	
liquids, nasals		$[+$ cons $][-\mathrm{voc}][+$ son $]$
vowels	$[-$ cons $][+\mathrm{voc}][+$ son $]$	
glides		$[-$ cons $][-\mathrm{voc}][+$ son $]$
illicit	[+cons $][+\mathrm{voc}]$	

Defective C/V nodes...

- specifications for the missing features are required by constraints like HavePlace
(16) Example: Representation for suffix class I /-pe:/

\bullet	\bullet	\bullet
	+ cons	- cons
-voc	- -von	+ +son
	- cont	+ cont
	-nas	-nas
	LAB	DORS

\Rightarrow abbreviated as: $\left.\quad{ }^{[-\mathrm{voc}}\right]$ pe:

Defective C/V nodes...

- are realized

Defective C/V nodes...

- are part of the following suffix and must be realized at the right edge of the stem
(17) O-Contiguitiy (=O-Cont) (Landmann 2002) Assign a violation mark for every instance where phonological portions in the output that belong to the same morpheme do not form a contiguous string. ('No M-internal insertion.')

Constraints responsible for iambic lengthening

MAX-S S_{AF}
Assign a violation mark for affix segment in the output without an input correspondent.

Ident-[vocalic] (=Id-[voc])
(McCarthy\&Prince 1995+1999)
Assign a violation mark if an input segment corresponds to an output segment with a different value for [$\pm \mathrm{voc}$].

HavePlace (=HavPl)
(e.g. Padgett 1995, McCarthy 2008)

Assign a violation mark for every segment that has no place specification.
Uniformity (=Unif)
(McCarthy)
Assign a violation mark for every output segment that corresponds to more than one input segment.

Demand to end in a C: realization of a default segment

(18) Realization of a defective C

$\mu+\mathrm{h}_{1} \mathrm{o}_{2} \mathrm{j}_{3} \mathrm{a}_{4}+{ }^{[-\mathrm{voc}]} \mathrm{p}_{\mathrm{y}} \mathrm{e}_{\mathrm{z}}$	Max-S ${ }_{\text {AF }}$	O-Cont	Id-[voc]	HavPl	UNIF
a. $\mathrm{h}_{1} \mathrm{O}_{2}^{\mu} \cdot \mathrm{j}_{3} \mathrm{á}^{\prime} 4 \cdot \mathrm{P}_{\mathrm{y}} \mathrm{e}_{\mathrm{z}}$	*!		।		
b. $\mathrm{h}_{1} \mathrm{O}_{2}{ }^{\mu} \cdot \mathrm{j}_{3, \mathrm{x}}{ }^{\text {a }}{ }_{4}{ }_{4} \cdot \mathrm{p}_{y} \mathrm{e}_{\mathrm{z}}$		*!	I		*
c. $\mathrm{h}_{1} \mathrm{O}_{2}{ }^{\mu} \cdot \mathrm{j}_{3} \mathrm{a}^{\prime} 4, \mathrm{x} \cdot \mathrm{P}_{\mathrm{y}} \mathrm{e}_{\mathrm{z}}$			*!		*
d. $\mathrm{h}_{1} \mathrm{o}_{2}{ }^{\mu} \cdot \mathrm{j}_{3} \mathrm{a}_{4} \mathrm{P}_{x} \cdot \mathrm{P}_{\mathrm{y}} \mathrm{e}_{z}$			।	*	

3.2. Satisfaction of the templatic requirement

Different phonological strategies apply to ensure satisfaction of the templatic requirement

Summarizing the ranking

(19)

Moraic Overwriting results in LH

$\mu+$ hek:a	Stress-to ।				DL]	Dep- μ
	All-Ft-L	RнT:I	Weight	MAX- $\mu_{\text {AF }}$		
a. hek:a	I			*!		
b. he ${ }^{\mu} \mathrm{ka}$	'		*!			
c. he ${ }^{\mu} \mathrm{ka}$:						*

Summarizing the ranking

(20)

C/V must be realized in final position

$\mu+\text { hoja }+[-\mathrm{voc}] \text { peH }$	LH	Max-S ${ }_{\text {AF }}$	O-Cont	Id [voc]	HavPl	UniF
a. $\mathrm{ho}^{\text {u }}$ japeH		*!				
b. $\mathrm{ho}^{\mu j_{\mathrm{j}} \mathrm{apeH}}$			*!			*
c. $\mathrm{ho}^{\mu}{ }_{\mathrm{jax}} \mathrm{peH}$				*!		*
d. ho ${ }^{\mu}{ }_{\text {jaP }}{ }_{x}$ peH					*	*

Example I: Insertion of /y/

(21) wyks realized as wykys before class I suffix

		C / V	HavPl	UNIF	Max-C	Lin
a.* wýks.kuH	Max!	Max			'	,
b.* wy ${ }^{\prime \prime}$ ks. ${ }^{\text {ckuH }}$	DL]!			*	,	1
c. wýl ${ }^{\prime \prime} \cdot$ sy ${ }_{\text {d }} \cdot \mathrm{kuH}$	DL]!		**			
d. wy ${ }^{\mu}$.kýs.xkuH			*	*	I	,

(Note that CCC cluster are independently impossible in SSM)

Example II: metathesis

(22) Pamla realized as ?amal before class I suffix

			HavPl	UNIF	Max-C	LIN
a. Pá $^{\prime \prime}$ m. l_{\times}a.kuH	DL]!					
b. Pá ${ }^{\mu} . \mathrm{I}_{\mathrm{x}} \mathrm{a} \cdot \mathrm{kuH}$	StW!	Cont!				
c. a $^{\mu}{ }^{\mu} \cdot l a P_{x} \cdot \mathrm{kuH}$			*!		*	
d. Pa^{μ}. $\mathrm{mál}_{\mathrm{x}} \cdot \mathrm{kuH}$						*

Example III: Shortening, insertion of $/ \mathrm{y} /$ and /?/

(23) cy:m realized as cymy? before class I suffix

$\mu+\mathrm{cy}: \mathrm{m}+{\stackrel{--\mathrm{voc}]}{\bullet_{\mathrm{x}}} \mathrm{kuH}}$	LH	C/V	HavPl	UNIF	Max-C	Lin
a. ${ }^{*}$ cý: ${ }^{\mu} \mathrm{m}_{x} \cdot \mathrm{kuH}$	DL]!			*		
b. $\mathrm{cy}^{\prime \prime} \mathrm{m}_{\mathrm{x}} \cdot \mathrm{kuH}$	DL]!			*		
c. $\mathrm{cy}^{\mu} \cdot \mathrm{m}_{\mathrm{x}} \hat{y} \cdot \mathrm{kuH}$	StW]!	Cont!	*	*		,
d. cy ${ }^{\mu} . \mathrm{mý}^{\prime} \mathrm{P}_{x} \cdot \mathrm{kuH}$			**			

(* CV :C syllables are independently impossible in SSM)

Example IV: C-Deletion

(24) hela:j realized as hela: before class II suffix

$\mu+\text { hela:j }+\hat{[+ \text { voc }]} \mathrm{t}$			HavPl	Unif ' Max-C		
a. he ${ }^{\mu}$.la: ${ }_{\text {x }} \mathrm{l}^{\text {d }}$		Cont!		*		
		Id!		*		
c. he^{μ}.la ${ }_{\text {a }}{ }^{\text {t }}$	1			*) *	

Lengthening suffixes in SSM

- recall that DepLink- μ] results in overwriting if a μ is prefixed
- but there are actually affixes that trigger lengthening, i.e. where a μ is apparently added to the stem!
(25) Lengthening suffixes in SSM
(Bradbent 1964:48, 106)
a. Penup-:eni:te-?

Penup:eniste?
'I chased you'
b. kel:a-na-:me?
kel:ana:me?
'It snowed on us'

Lengthening suffixes in SSM

(26) \quad A floating μ in the representation of a lengthening suffix

	$\begin{array}{l:l}\text { MAX- } \mu_{\text {AF }} & D L]\end{array}$	Max- μ
a.		*
b.	$\begin{aligned} & \text { । } \\ & \hline \end{aligned}$	
c.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	*!

Moraic prefixes overwrite and moraic suffixes lengthen

(27)

	MAX- $\mu_{\text {AF }}$	DL]	MAX- μ
Lengthening			
a.	*!		*
b.	।		
C.	!		*!
Overwriting			
a.	*!		*
b.	1 । I		
C.	1 1 1		*

Conclusion

- templatic effects in Southern Sierra Miwok (SSM) are the consequence of the affixation of moras and underspecified segments
- this analysis is based exclusively on the affixation of segment-sized units and avoids the assumptions of syllabified X-Slot positions in the representation of morphemes
- this unifies analysis for templatic effects with the analysis of other lengthening phenomena in the language that are based on the assumption of floating moras as well

References

- Archangeli, Diana (1984), Underspecification in Yawelmani Phonology and Morphology, PhD thesis, MIT. Archangeli, Diana (1991), 'Syllabification and prosodic templates in Yawelmani', Natural Language and Linguistic Theory 9, 231-284.

■ Bermúdez-Otero, Ricardo (to appear), The architecture of grammar and the division of labour in exponence, in J.Trommer, ed., 'The morphology and phonology of exponence: the state of the art', Oxford University Press, Oxford.
■ Broadbent, Sylvia (1964), The Southern Sierra Miwok Language, University of California Press.

- Brown, J.C. (2003), Floating moras and features in Southern Sierra Miwok, in 'Proceedings from the sixth Workshop on American Indigenous Languages'.
- Bye, Patrick and Peter Svenonius (to appear), Non-concatenative morphology as epiphenomenon, in J.Trommer, ed., 'The morphology and phonology of exponence: the state of the art', Oxford University Press, Oxford.
■ Callaghan, Catherine (1987), Northern Sierra Miwok Dictionary, University of California Press.
■ Davis, Stuart and Isao Ueda (2002), 'The typology of mora augmentation', Online availabe at: http://wata-net.com/proceedings/IsaoUeda/DavisandUeda2.pdf. Hayes, Bruce (1989), 'Compensatory Lengthening in moraic phonology', LI 20, 253-306.
■ Hayes, Bruce (1995), Metrical Stress Theory: principles and case studies, University of Chicago Press, Chicago.
- Hinton, Leanne (1994), Flutes of fire, Essays on California Indian Languages, Heyday Books.

References

■ Ito, Junko and Armin Mester (1993), 'Licensed segments and safe paths', Canadian Journal of Linguistics 38(2), 197-213. Special issue of the Canadian Journal of Linguistics.
■ Kager, René (1999), Optimality Theory, Cambridge University Press, Cambridge.

- Landman, Meredith (2002), Morphological contiguity, in A.Carpenter, A.Coetzee and P.de Lacy, eds, 'Papers in Optimality Theory II: University of Massachusetts-Amherst Occasional Papers in Linguistics', GLSA, Amherst, MA.
- Levin, Juliette (1985), A Metrical Theory of Syllabicity, PhD thesis, MIT, Cambridge, Mass. Marantz, Alec (1982), 'Re reduplication', Linguistic Inquiry 13, 483-545. McCarthy, J. (1979), Formal Problems in Semitic Phonology and Morphology, PhD thesis, Massachusetts Institute of Technology.
■ McCarthy, John and Alan Prince (1995), Faithfulness and reduplicative identity, in L. W. D.Jill N. Beckman and S.Urbanczyk, eds, 'University of Massachusetts Occasional Papers in Linguistics', pp. 249-384.
- McCarthy, John and Alan Prince (1999), Faithfulness and identity in prosodic morphology, in R.Kager, H.van der Hulst and W.Zonneveld, eds, 'The prosody-morphology interface', Cambridge: Cambridge University Press, pp. 218-309.
- Morén, Bruce Timothy (1999), Distinctiveness, Coercion and Sonority: A unified Theory of Weight, PhD thesis, University of Maryland at College Park.
■ Nevins, Andrew and Iona Chitoran (2008), 'Phonological representations and the variable patterning of glides', Lingua 118, 1979-1997. Padgett, Jaye (1994), 'Stricture and nasal place assimilation', Natural Language and Linguistic Theory 12, 463-513.

References

- Padgett, Jaye (2007), ‘Glides, vowels and features’, Lingua 118, 1937-1955.
- Prince, Alan (1990), Quantitative consequences of rhythmic organization, in M.Ziolkowski, M.Noske and K.Deaton, eds, 'Parasession on the Syllable in Phonetics and Phonology', Chicago Linguistic Society, Chicago, pp. 355-398.
- Seiler, Guido (2008), 'How to do things with moras: variation and change of quantity alternations across Upper German dialects', Paper presented at the International Morphology Meeting, Vienna.
- Sloan, Kelly Dawn (1991), Syllables and Templates: Evidence from Southern Sierra Miwok, PhD thesis, MIT.
- Trommer, Jochen and Eva Zimmermann (2010), 'Generalized mora affixation', talk given at the 18th Manchester Morphology Meeting, Manchester, 20th-22th May 2010.

