Cyclic Feature Deletion

Kiranti verbal agreement

Daniela Henze & Eva Zimmermann

1st Central European Conference in Linguistics for Graduate Students

August 30, 2011

Main Claim

Different patterns of blocking in Kiranti verbal agreement systems show instances of the same generalization that is best analyzed as an instance of **Cyclic Feature Deletion**.

Hayu non-past (Michailovski 1974)

A∖P	1s	1de	1pe	1di	1pi	2s	2d	2p	3s	3d	3p
1s						-no	-no-tshe	-no-ne	-ŋ	-ŋ-tshe	-ŋ-me
1de						-tshok	-tshok	-tshok	-tshok	-tshok	-tshok
1pe						-kok	-kok	-kok	-kok	-kok	-kok
1di									-tshik	-tshik	-tshik
1pi									-ke	-ke	-ke
2s	-ŋo	-tshok	-kok						-Ø	-Ø	-me
2d	-ŋo-tshe	-tshok	-kok						-tshik	-tshik	-tshik
2p	-ŋo-ne	-tshok	-kok						-ne	-ne	-ne
3s	-ŋo	-tshok	-kok	-tshik	-ke	-Ø	-tshik	-ne	-Ø	-tshik	-me
3d	-ŋo-tshe	-tshok	-kok	-tshik	-ke	-Ø	-tshik	-ne	-tshik	-tshik	-me
3p	-ŋo-me	-tshok	-kok	-tshik	-ke	-me	-tshik	-ne	-me	-me	-me
intr	-ŋo	-tshok	-kok	-tshik	-ke	-Ø	-tshik	-ne	-Ø	-tshik	-me

Agreement in Hayu

- agreement: number (sg, du, pl), person (1, 2, 3) and case (S, A, P)
 - Decomposition of features

Number			Person	Case	
sg	+sg,-pl	1	+1,-2,-3	Intr	S
du	-sg,-pl	2	-1,+2,-3	Agens	Α
pl	-sg,+pl	3	-1,-2,+3	Patient	Р

• with both arguments in transitive contexts, as e.g.

A∖P	1s
2s	-ŋo
2d	-ŋo-tshe
2p	-ŋo-ne

/ŋo/
$$\leftrightarrow$$
 [SP,+1+sg]
/tshe/ \leftrightarrow [-sg-pl]
/ne/ \leftrightarrow [-1+2-sg+pl]

But what about...?

A∖P	1s	1de	1pe
2s	-ŋo	-tshok	-kok
2d	-ŋo-tshe	-tshok*-tshe	-kok*-tshe
2p	-ŋo-ne	-tshok*-ne	-kok*-ne
3s	-ŋo	-tshok	-kok
3d	-ŋo-tshe	-tshok*-tshe	-kok*-tshe
3p	-ŋo-me	-tshok*-me	-kok*-me

Or...?

$A\P$	2s	2d	2p
1s	-no	-no-tshe	-no-ne
1de	-tshok	-no-tshe -tshok*-tshe	-tshok*-ne
1pe	-kok	-kok*-tshe	-kok*-ne

Or...?

$A\P$	3s	3d	3p
1s	-ŋ	-ŋ-tshe	-ŋ-me
1de	-tshok	-tshok*-tshe	-tshok*-me
1pe	-kok	-kok*-tshe	-kok*-me

Generalization

- $1 \gg 2 \gg 3$ and agreement with the highest argument
- if this argument is singular: agreement with the other argument as well
- otherwise any expected agreement with the other head is blocked

A∖P	1s	1de	1pe
2s	-ŋo	-tshok	-kok
2d	-ŋo-tshe	-tshok*-tshe	-kok*-tshe
2p	-ŋo-ne	-tshok*-ne	-kok*-ne
3s	-ŋo	-tshok	-kok
3d	-ŋo-tshe	-tshok*-tshe	-kok*-tshe
3p	-ŋo-me	-tshok*- me	-kok*-me

/ŋo/	\leftrightarrow	SP,+1+sg
/kok/	\leftrightarrow	+1-2-sg+pl
/tshok/	\leftrightarrow	+1-2-sg-pl
/ne/	\leftrightarrow	+2-1-sg+pl
/me/	\leftrightarrow	+3-sg+pl
/tshe/	\leftrightarrow	–sσ–nl

Analysis

The challenge for morphological theories

- hierarchy effects in the ordering of morphemes
- blocking of expected markers
 - shows an inside-out cyclic effect: markers that are expected to follow are blocked
 - affects only the "lower" argument

A realizational theory Distributed Morphology (Halle & Marantz 1993)

- Vocabulary Items (VIs) are inserted to realize the morphosyntactic features the syntax provides
- VIs can be underspecified and are inserted if their features are a proper subset of the morphosyntactic feature context (Halle 1997)
- if more than one VI matches a context, the more specific marker is chosen

Blocking of expected markers in DM

- the systematic absence of markers in a realizational theory is derived via impoverishment rules
- deleting of features in the input

(1)
$$-sg \rightarrow \emptyset/[A,-1,_][-3,-sg]$$
 (="delete a feature -sg on a -1 agent head in the context of a -3,-sg head")

A∖P	1s	1de	1pe
2s	-ŋo	-tshok	-kok
2d	-ŋo-tshe	-tshok*-tshe	-kok*-tshe
2p	-ŋo-ne	-tshok*-ne	-kok*-ne
3s	-ŋo	-tshok	-kok
3d	-ŋo-tshe	-tshok*-tshe	-kok*-tshe
3р	-ŋo-me	-tshok*-me	-kok*-me

The problem with such an account

- impoverishment is in itself blind for hierarchies
- i.e. very specific rules would be necessary to capture all blocking contexts
- the inside-out direction of blocking is a coincidence (impoverishment applies prior to insertion and cannot refer to already inserted markers)

Our Departure

- prominence hierarchies are implemented as specificity concept
- deletion/blocking is only sensitive to already realized features

Cyclic Feature Deletion

 after some markers no blocking arises and after other markers blocking can be observed

(2) Markers in Hayu

The crucial generalization:

The blocking markers all realize the same features: -sg

= a certain morpho-syntactic feature triggers blocking

Our proposal: Cyclic Feature Deletion

- impoverishment rules have features that are already realized as their context
- after every insertion step, impoverishment rules are checked for whether their context is met
- they therefore apply cyclically after every insertion step
- (3) Cyclic Impoverishment

Hayu and CyFDs: Assumptions

- both agreement heads fuse together: their feature structure is visible (but: still structured!)
- fission as feature discharge: 'insertion as long as possible'
- specificity decides competition and is bound to the quality of features: $1 \gg 2 \gg 3 \gg \text{pl} \gg \text{du} \gg \text{sg}$
- this derives:
 - that the insertion starts with the head bearing the highest features on the scale $1\gg 2\gg 3$
 - if both heads are specified for the same person (3–3), the number hierarchy pl ≫ du ≫ sg decides

Impoverishment in Hayu

- an impoverishment rule deletes all remaining features in the context of a visible (=realized) feature <-sg> (4)
- from this it follows that no agreement marker is ever possible after a non-singular marker but very well possible after a singular agreement marker
- (4) Impoverishment in Hayu $[\dots]_{\alpha} \Rightarrow \emptyset / \langle -sg \rangle_{\beta}$

Exemplifying Derivation: two markers in 2d-1sg

$$I. \quad \left[\begin{array}{c} [A,-1,+2,-3,-sg,-pl] \\ [P,+1,-2,-3,+sg,-pl] \end{array} \right] \quad /\eta o/ \leftrightarrow [P+1+sg] \quad \left[\begin{array}{c} [A,-1,+2,-3,-sg,-pl] \\ [P,+1,-2,-3,+sg,-pl] \end{array} \right]$$

D. No context for an impoverishment rule is met

$$I. \quad \left[\begin{array}{c} [A,-1,+2,-3,-sg,-pl] \\ [P,+1,-2,-3,+sg,-pl] \end{array} \right] \quad /tshe/ \leftrightarrow [-sg-pl] \quad \left[\begin{array}{c} [A,-1,+2,-3,-sg,-pl] \\ [P,+1,-2,-3,+sg,-pl] \end{array} \right]$$

D.
$$[\ldots]_{\alpha} \Rightarrow \varnothing / \langle -sg \rangle_{\beta}$$

No marker specification is met

-ŋo-tshe

Exemplifying Derivation: A is blocked in 2d-1pe

I.
$$\left[\begin{array}{c} [A,-1,+2,-3,-sg,-pl] \\ [P,+1,-2,-3,-sg,+pl] \end{array} \right] \hspace{0.5cm} /kok/ \leftrightarrow [+1-2-sg+pl] \hspace{0.5cm} \left[\begin{array}{c} [A,-1,+2,-3,-sg,-pl] \\ [P,+1,-2,-3,-sg,+pl] \end{array} \right]$$

- D. $[\dots]_{\alpha} \Rightarrow \varnothing / \langle -sg \rangle_{\beta}$
- D. No context for an impoverishment rule is met
- No marker specification is met

-kok

Alternative: 'Regular' impoverishment

Another way to put the generalization

No two -sg markers are possible.

Seems to be captured easily by an impoverishment rule like (5)

(5)
$$[-sg...]_{\alpha} \Rightarrow \emptyset / \underline{\hspace{0.5cm}} [-sg]_{\beta}$$

But on which head is the [-sg] deleted?

 it is not always the object or subject which is deleted – its always the argument, which is lower on the hierarchy

An example: 'regular' impoverishment in Hayu

(6) ①
$$[-sg] \rightarrow \emptyset / _ [A,-3,-sg]$$

② $[-sg] \rightarrow \emptyset / [A,-1,_] [-3,-sg]$
③ $[-sg] \rightarrow \emptyset / [+3,-pl,_] [+3,+pl]$

A∖P	1s	1d	1pl	2s	2d	2pl	3s	3d	3p
1s				Α	A-P	A-P	Α	A-P	A-P
1ns				Α	A ①	A 1	Α	A ①	A ①
2s	Р	Р	Р						P
2d	P-A	P 2	P 2				Α	A ①	A ①
2pl	P-A	P 2	P 2				Α	A 1	A ①
3s	P	Р	P		Р	Р		Р	P
3d	P-A	P 2	P 2		P 2	P 2	Α	Α	P ③
3р	P-A	P 2	P 2	Α	P 2	P ②	Α	A ③	Α

The hierarchy effects are a mere coincidence.

Discussion

Possible extension: marker-sensitive blocking

e.g. in Potawatomi (Hockett 1939):

A∖P	1pe	1pi	2p	3p	obv	-anim
1p			-men*-m	-men*- k	-men*- n	-men*-n
2p	-men*-m			-wa-k	$-wa-n_1$	-wa-n ₂
3p	-nan-k	-nan-k	-wa-k		$-wa-n_1$	-wa-n ₂

(7) Vocabulary Items

Cross-language evidence

Various blocking phenomena in unrelated languages easily follow in such an account, e.g.:

- in Gurrgoni (Gunwinggun, Green 1995),
 a specific -sg > -sg marker blocks any expected number agreement afterwards
- in Huehuetla Tepehuan (Totanacan, Troiani 2004),
 the otherwise very regular biactantal agreement paradigm is obscured
 in 1>2 forms where the expected number agreement marker is blocked
- in Japhug Rgyalrong (Sino-Tibetan, Jacques 2010), certain person prefixes make any subsequent number agreement with the other head impossible

Conclusion

Cyclic Feature Deletion...

- the context of impoverishment rules: already realized features_R
- such impoverishment rules consequently do not apply prior to insertion but after insertion of certain markers

...and its advantages

- derives the Kiranti patterns with a minor adjustment in standard DM
- language variation: only in the hierarchy deciding specificity
- it therefore avoids:
 - long lists of arbitrary impoverishment/fission rules
- is able to predict marker-sensitive blocking as well

References

- G. Green (1995), A grammar of Gurrgoni (North Central Arnhem Land).
- G. Jacques (2010), The inverse in Japhug Rgyalrong. Language and Linguistics 11(1), 127-157.
- M. Halle and A. Marantz (1993), Distributed Morphology and the pieces of inflection. In K. Hale and S. J. Keyser, editors, *The View from Building 20*, pages 111–176. Cambridge MA: MIT Press.
- M. Halle (1997), Distributed Morphology: Impoverishment and fission. In Y. K. Benjamin Bruening and M. McGinnis, editors, *Papers at the Interface*, volume 30 of *MIT Working Papers in Linguistics*, pages 425–449. Cambridge MA: MITWPL.
- C. F. Hockett (1939), The Potawatomi language. A descriptive grammar. PhD thesis, Yale University.
- C. F. Hockett (1948), Potawatomi I: Phonemics, morphophonemics, and morphological survey. *International Journal of American Linguistics*, 14(1):1–10.
- B. Michailovsky (1974), Hayu typology and verbal morphology. *Linguistics of the Tibeto-Burman Area* 1, 1–26.
- R. Noyer (1997), Features, Positions and Affixes in Autonomous Morphological Structure. Garland Publishing, New York, revised version of 1992 MIT doctoral dissertation edition.
- D. Troiani (2004) Aperçu grammatical du totonaque de Huehuetla, Puebla, Mexique. Lincom Europa.
- G. T. Stump (2001), Inflectional Morphology. Cambridge: Cambridge University Press.