Main Claim

A monorepresentational analysis for the allomorphy in Yucunany Mixtepec Mixtec (=YM) is possible. The alternation between realization of only an additional L-tone or additional segments in the $1 . \mathrm{SG}_{\mathrm{g}}$ follows since the latter is prosodically defective and only realized as a last resort.

Allomorphy in Yucunany Mixtepec

 (Pike and Ibach, 1978; Paster and Beam de Azcona, 2004a,b; Paster, 2007)
Background

- a dialect of Mixtepec Mixtec ($\sim 12,000 \mathrm{sp}$.); Otomanguean - three tones: $\mathrm{H}(=\mathrm{V}), \mathrm{M}(=\mathrm{V}), \mathrm{L}(=\mathrm{V})$, and contour tones
- V -length not contrastive ('VV(VV)' notated for (long) contour tones) - default assumption: $\mathrm{TBU}=\sigma$
1.Sg formation in YM
- a low tone is added \& creates a new contour on the final σ - a low tone is added \& overwrites the final base tone
- the segmental string /-yù/ surfaces
(Paster and Beam de Azcona, 2004a, 3-4)
\rightarrow contexts for allomorphs phonologically predictable: A. a final low tone is added to H -final stems
(1) nàmá 'soap' nàmáà 'my soap' L H \rightarrow L HL xínìi 'hat' xíniìi 'my hat' H LH \rightarrow H LHL
B. a low tone overwrites \mathbf{M} on final σ
(2) la'la 'mucus' la'là 'my mucus' M M \rightarrow M L xá'nu 'cigarette' xa'nù 'my cigarette' $\mathrm{H} M \rightarrow \mathrm{H} \mathrm{L}$
\rightarrow if this would not create an LH L sequence
(3) yùúti 'sand' yùútiì 'my sand' LH M \rightarrow LH ML yòóso 'metate' yòósoò 'my metate' LH M \rightarrow LH ML
\rightarrow or an L L sequence
(4) titzi 'stomach' titziì 'my stomach' L M \rightarrow L ML kwàa 'man's sister' kwà'aà 'my man's sister' L M \rightarrow L ML
C. /-yù/ surfaces if the stem ends in an L-toned σ
(5) sòkò 'shoulder' sòkòyù 'my shoulder' L L \rightarrow L L yù tutù 'paper' tutùyù 'my paper' $M L \rightarrow M L$ yù

Option (1): a 'polyrepresentational' analysis - L and /yù/ are stored; the latter is realized to avoid homophony (cf. Paster and Beam de Azcona, 2004a, 3-4)
Option (2): a 'monorepresentational' analysis

- one underlying representation + phonology

Q1: Why is the low tone sometimes added to the base tones and overwrites the final tone in other contexts?
Q2: How can the realization of tone and segments alternate?

A monorepresentational analysis

$1 . \mathrm{SG}_{\mathrm{G}} \leftrightarrow \mathrm{L} \mathrm{yu} / \# \quad \rightarrow \quad$ a floating L and segmental /yu/; the latter only

(7) Preference for not realizing /yu/ but realization of $L>$ (1)

(1) Non-realization of /yu/

- the /yu/ underlyingly lacks a σ node and since $\operatorname{Dep}-\sigma$ (6-a) dominates Max-S (6-b), the morpheme is preferably not realized (=morphemes realized in all contexts have an underlying σ)
- the L must be realized due to undominated MAX-L (6-c)
(6) a. Dep Assign a violation mark for every output σ
(6) a. $\begin{gathered} \\ \sigma\end{gathered}$ without an input correspondent.

Max Assign a violation mark for every input seg-
b. S ment without an output correspondent.
c. Max Assign a violation mark for every input L-

L tone without an output correspondent.
$\left.\begin{array}{|cc|cc|c|c|}\hline \text { L } & \text { H } & \text { L } \\ \sigma & \sigma \\ \text { na } & \text { ma } & \text { yu }\end{array}\right)$

(2) Contour creation vs. overwriting

- new contour tones are penalized by ${ }^{*}$ Diff $^{2} L_{\sigma}\left(={ }^{*}\right.$ DAL; (9)) - overwriting for M-final bases since *DAL dominates Max-M; not for H -final bases since Max-H dominates *DAL
(9) Assign a violation mark for tones associated to
(8) Floating L overwrites a base-final $M>$ (2)
(10)
(10) Floating L creates new contour with a base-final H (1)

$\begin{array}{ccc} \mathrm{M} & \mathrm{M} & \mathrm{~L} \\ \sigma & \\ \mathrm{C}^{\prime} & \sigma & \\ \hline \end{array}$	$\begin{gathered} \text { Max } \\ \mathrm{L} \end{gathered}$	$\begin{gathered} \text { Max } \\ \mathrm{H} \end{gathered}$	$\begin{gathered} \text { Dep } \\ \sigma \end{gathered}$	*DAL	$\begin{gathered} \text { MAX } \\ M \end{gathered}$	$\begin{gathered} \text { MAX } \\ \mathrm{S} \end{gathered}$
				*!		**
					*	**

(3 No adjacent L-initial syllables

- no overwriting if two adjacent σ 's associated with an initial L would result; excluded by the positional, non-local OCP (11)
(11) $\quad{ }^{* \mathrm{~L}} \sigma^{\mathrm{L}} \sigma \begin{aligned} & \text { Assign a violation mark for every pair of adja- } \\ & \text { cent } \sigma^{\prime} \text { 's that are associated with an initial } \mathrm{L}\end{aligned}$ Other examples for non-local OCP effects: Plag (1998), Other examples for non-local OCP effects:
Ito and Mester (1986), or Gallagher (2013).
(12) No overwriting for M-final bases (3),(4)

 LHML
a. $\begin{gathered}\sigma \\ \text { yu } \\ \\ \text { ti }\end{gathered}$

LH Licma
b. $\begin{array}{cc}\sigma & \sigma \\ & \text { yu } \\ \text { ti }\end{array}$

(4) Realization of $/ \mathrm{yu} /$ as last resort

- association of L to bases ending in an L is excluded by *[TT] - realization of /yu/ as last resort to satisfy MAx-L
(13) *[TT] $\begin{aligned} & \text { Assign a violation mark for every pair of adja- } \\ & \text { cent identical }\end{aligned}$ *TT] cent identical tones associated to one TBU.
(14) No adjacent L 's: realization of $/-y \mathbf{u} />$ (5)

$\begin{array}{cccc} \text { M } & \text { L } & \text { L } \\ \text { O } & \sigma & \\ \text { tu } & \text { tu } & \text { yu } \end{array}$	*[TT]	$\begin{array}{\|c\|c} \text { Max } \\ \mathrm{L} \end{array}$	$\begin{gathered} \text { Dep } \\ \sigma \end{gathered}$	${ }^{* 1} \sigma^{\text {L }} \sigma$	$\begin{gathered} \text { Max } \\ \mathrm{S} \end{gathered}$
a. $\begin{array}{ccc}\mathrm{M} & \mathrm{L} & \mathrm{L} \\ \text { o } & \mathrm{\sigma} \\ \text { tu } & \text { tu }\end{array}$	*!				**
b. $\begin{array}{ccc}M & L \\ \sigma & \dot{\sigma} \\ & \text { tu } & \text { tu }\end{array}$		*!			**
$\begin{array}{llll} & \mathrm{M} & \mathrm{~L} & \mathrm{~L} \\ \mathrm{\sigma} & \mathrm{O} \\ \text { tu } & \text { tu } & \text { yu } \end{array}$			*	*	

The main argument

$$
{ }^{*}[\mathrm{TT}]<{ }^{* 1} \sigma^{\mathrm{L}} \sigma
$$

A lexical contrast is reduced to a difference in underly ing prosodic structure

- (16-a) and (16-b) are possible $\quad \begin{aligned} & \text { Independent arguments for } \\ & \text { contrastive syllabification in, }\end{aligned}$ input representations in OT (given Richness of the Base)

Vaux (2003), or Iosad (2013).
\rightarrow the analysis based on Dep-o implies that this difference between underlying forms has a crucial surface effect
(16) a. \qquad b.

- realized in all contexts
realized as last resort

Extension: another example

- morphological V-lengthening in La Paz Aymara (17)
- whenever double-lengthening is expected, /-ja:/ surfaces: alternative repair to realize both 'lengthenings' (18)

(18) a. warmi--:-: $\quad \underset{\text { women-VB-1 } 3 \text {.Fut }}{\text { [warmija:] }]}$ I will be a women' ${ }^{*}$ warmi:: b. quiqi-ni-:-:-ta $\begin{gathered}\text { money-possessor-VB-1>3.Fut-FS } \\ \text { [qui_quill have money }\end{gathered}$

A monorepresentational analysis
$\cdot /-\mathrm{ja} /$ lacks a σ and is not realized if lengthening possible - MAX- μ demands μ-realization: V-lengthening
\rightarrow realization of $/-\mathrm{ja} /$ as last resort to realize all μ 's
(19) V

Allomorph 1:
V-lengthening

Summary

a monorepresentational account of allomorphy in YM where only an L-tone or segments are realized \rightarrow prosodically defective segments only realized as a last resort - prosodic defectivity is independently predicted in OT and can account for apparently lexical contrasts

