Exceptional non-triggers are weak: The case of Molinos Mixtec

Eva Zimmermann Leipzig University

January 13th, 2018 OCP 15

Main Claim

The present case study of tones in San Pedro Molinos Mixtec shows that:

- the original Gradient Symbolic Representation system should be modified and assume gradient activity in the output.
- exceptional elements can be exceptional for more than one phonological process which is a strong argument for a representational account.

(Cf., for example, Lieber (1987); Zoll (1996); Wolf (2007))

exceptional non-triggers indeed exist.
 (Cf., for example, Smith (2017); Hout (2017) and vs. Finley (2010))

- 1. Gradient Symbolic Representations
- 2. Data
- 3. Analysis
- 3.1 Asymmetry 1: Exceptional non-trigger for H-spreading
- 3.2 Asymmetry 2: Exceptional non-undergoer for H-overwriting
- 4. Summary

Gradient Symbolic Representations

Gradient Symbolic Representation (=GSR; Smolensky and Goldrick, 2016)

- symbols in a linguistic representation can have different degrees of presence or numerical activities
- this can predict lexical exceptions: elements in the underlying representation of a morpheme can be exceptionally weak:
 - liaison consonants in French (Smolensky and Goldrick, 2016)
 - semi-regularity of Japanese Rendaku (Rosen, 2016)
 - allomorphy in Modern Hebrew (Faust and Smolensky, 2017)
 - lexical accent in Lithuanian (Kushnir, 2017)
 - lexical stress in Moses Columbian Salishan (Zimmermann, 2017b,c)
 - tone sandhi in Oku (Nformi and Worbs, 2017)
 - tone allomorphy in San Miguel el Grande Mixtec (Zimmermann, 2017*a*,*d*)

Gradient Symbolic Representations and HG

- grammatical computation inside Harmonic Grammar (Legendre et al., 1990; Potts et al., 2010)
- any change in activity is a faithfulness violation

(1)

$b_1a_1t_1-p_{0.5}$	Max	
	5	
a. batp		0
b. bap	-1	-5
™ c. bat	-0.5	-2.5

Prediction

Elements active to a lesser degree are **easier to delete**: unstable elements, allomorphs, exceptional repairs,...

Gradient Symbolic Representations in the Output (Zimmermann, 2017a,d)

- output elements can be weakly active as well
- every marked structure M violates a markedness constraint *M by
 M's combined activity (= sum of activities of all its elements)

(2)

$b_1a_1t_1-p_{0.5}$		*CC] _σ	DEP	Max	
		3	2	1	
a.	$b_1a_1t_1p_1$	-1	-0.5		-4
b.	$b_1a_1t_1p_{0.5}$	-0.75			-2.25
№ C.	$b_1a_1t_1$			-0.5	-0.5

Prediction

Elements active to a lesser degree are not as bad a markedness problem or not as good a markedness solution: Exceptional non-triggers

Data

Molinos Mixtec

- San Pedro Molinos (=MOL), a variety of Mixtec/Otomanguean, was spoken by 700 speakers according to Hunter and Pike (1969)
- variety closely related to San Miguel el Grande Mixtec (Cf. Pike (1944); Mak (1950); Hollenbach (2003); McKendry (2013); theoretical accounts in Goldsmith (1990); Tranel (1995); Zimmermann (2016))
- all the data in the following comes from Hunter and Pike (1969)

Background: Tones in MOL

- three level tones high (H; á), mid (M; ā), and low (L; à)
- only a single tone on one syllable (CV_1V_1 =bisyllabic)
- basic morphological unit in Mixtecan: a binary CVCV or CVV unit (='couplet')

(3) Tonal contrasts in MOL (Hunter and Pike, 1969, 27)

```
tātá-są tūtā-są tūtù-są 
'my father' 'my firewood' 'my paper'
```

?ùù ríkī ?ùù kītī ?ùù híī

'two woodpeckers' 'two animals' 'two fists'

Tone perturbation

- as in basically all Otomanguean languages, MOL has 'perturbing' morphemes that trigger a change for the tone(s) of a following morpheme (Dürr, 1987; Pike, 1944; Mak, 1950; Hollenbach, 2003; McKendry, 2013)
- some morphemes trigger an additional H that overwrites underlying M or L of the initial TBU of a following morpheme

(4) H-overwriting

$$XX^H XX \rightarrow XX HX$$

Tone Perturbation

(5) (Hunter and Pike, 1969, 35-36)

M1 M2 | Surface || Tones

Nor	n-perturbi	ing morphe	mes	
a.	?ù∫ì 'ten'	rīŋkī 'mouse'	?ù∫ì rīŋkī 'ten mice'	LL MM→LL MM
b.	$7\overline{ ilde{ id}}}}}}}}} \} }} } } } } } } } } $	sùʧī ^H 'child'	ʔ∏ૄ sùʧī 'one child'	MM+LM ^H →MM LM
Peri	turbing m	orphemes	'	''
c.	kùù ^H 'four'	t∫ìká 'baskets'	kùù tʃíká 'four baskets'	LL ^H LH→LL H H
d.	ʒā?ā ^H 'chiles'	ʒìʧí 'dry'	ʒāʔā ʒ í ʧí 'dry chiles'	MM ^H LH→MM HH
e.	síví ^H 'name'	tèē 'man'	síví t é ē 'name of the man'	HH ^H LM→HH <mark>H</mark> M
f.	kītī ^H 'animal'	kūù 'to die'	kītī k ú ù 'the animal will die'	MM ^H ML→MM H L

Tone perturbation & spreading

 if a perturbing morpheme precedes a morpheme that ends in an M-toned TBU and is also perturbing, both TBU's of this morpheme become high

(6) H-overwriting and spreading

$$XX^H$$
 XM^H $\rightarrow XX$ **HH**

Tone perturbation & spreading

(7) (Hunter and Pike, 1969, 35-36) M1 M2 Surface Tones H-overwriting and spreading sùtſīH $HH^{H}+LM^{H}\rightarrow HH$ síví^H síví sútlí a. 'name' 'child' 'name of the child' kītī^H $HH^{H} + MM^{H} \rightarrow HH$ sívíH h. síví kítí 'name' 'animal' 'name of the animal' kītī^H kāā^H $MM^{H} + MM^{H} \rightarrow MM HH$ kītī káá c. 'animal' 'to eat' 'the animal will eat' No spreading if M2 is not M-final kùù^H zòò^H $LL^{H}+LL^{H}\rightarrow LL^{H}L$ kùù zóò 'mont(H) 'four months' No spreading if M2 has no floating H síví^H $HH^{H}+LM\rightarrow HHHM$ síví téē e. tèē 'name' 'man' 'name of the man'

Optionally perturbing morphemes

- there are three classes of morphemes in MOL:
 - 1 non-perturbing ones (cf. (5)-a+b): XX
 - 2 perturbing ones (cf. (5)-c-g; (7)): XX^H
 - **3 optionally perturbing** ones: XX^(H)

Optionally perturbing morphemes

(8) (Hunter and Pike, 1969, 35-36)

	M1	M2	Surface	Tones
a.	hìkī ^(H) 'fist, paw'	tèē 'man'	hìkī t <mark>é</mark> ē∼tèē 'the man's fist'	LM ^(H) +LM→LM HM~LM
b.	hìkī ^(H) 'fist, paw'	ţĵ?į 'skunk'	hìkī ʧ <mark>[</mark> ʔī[~ʧ]ʔī['the skunk's paw'	LM ^(H) +LM→LM HM~LM
c.	ñùtī ^(H) 'sand'	ʒìʧí 'dry'	ñùtī ʒ <mark>í</mark> ʧí∼ʒìʧí 'dry sand'	LM ^(H) +LH→LM HH∼LH

Optionally perturbing morphemes and H-spreading

- if they are (optionally) realized, however, they undergo it
- optionally perturbing morphemes never trigger H-spreading

Optionally perturbing morphemes and H-spreading

(9)				(Hunter and Pike, 1969, 36)
	M1	M2	Surface	Tones
Nev	er a trigger			
a.	síví ^H	t[j?[(H)	síví ʧ <mark>į</mark> ʔį̄	HH ^H +LM ^(H) →HH H M
	'name'	'skunk'	'name of the skunk'	
b.	hìkī ^(H)	ţĵĵŢ ^(H)	hìkī ʧ <mark>í</mark> ʔīᢩ~ʧĵ̞ʔīૃ	$LM^{(H)}+LM^{(H)}\rightarrow LM \ HM\sim LM$
	'fist, paw'	'skunk'	'the skunk's paw'	
b	ut always a	ın undergo	 per (if realized)	
c.	t[j?ī[^(H)	kāā ^H	ţį̂ʔį̄ k <mark>áá</mark> ∼kāā	$LM^{(H)}+MM^{H}\rightarrow LM HH\sim MM$
	'skunk'	'to eat'	'the skunk will eat (it)'	
d.	hìkī ^(H)	sùʧī ^H	hìkī s <mark>ú</mark> ʧí∼sùʧī	$LM^{(H)}+LM^{H}\rightarrow LM$ $HH\sim LM$
	'fist'	ʻchild'	'the child's fist'	

Perturbing morphemes: Summary

Perturbing morphemes: Summary

- the optionally perturbing morphemes are exceptional for two processes:
 - they are only optionally realized: Exceptional optional non-undergoer
 - they never trigger H-Spr: Exceptional non-trigger
- → not simply a variation between behaving as a perturbing morpheme/a non-perturbing one but a true asymmetric mixture of properties

Analysis

Analysis in a nutshell

Representational assumption

- 1 Some morphemes in MOL end in an unassociated (=floating) H-tone
- **2** The floating H of some morphemes is **fully active**: H_1
- f 3 The floating H of other morphemes is partially active: $f H_{0.4}$
 - the weakly active H_{0.4} is not a bad enough problem for *FLT and is not always associated
 - 2 the weakly active H_{0.4} is not a bad enough problem for the markedness constraint triggering H-spreading

Basic floating tone realization

- unassociated floating tones violate *FLT (11-a) and realization of a H-tone (=MAXH, (11-b)) is more important than any other tone
- overwriting results since two tones on one TBU are impossible (11-c)
- and floating tones must associate to another morpheme (11-d)
- (11) a. *FLT: Assign X violation for every tone T_1 that is not associated to a TBU where X is the activity of T_1 .
 - b. MAXT: Assign violation X for any tonal activity X in the input that is not present in the output.
 - c. *Cont: Assign X violation for every TBU_1 associated to tones T_2 and T_3 where X is the shared activity of TBU_1 , T_2 , and T_3 .
 - d. ALT: Assign X violation for every new association between a TBU and a tone of the same morphological affiliation.

Overwriting: Floating H₁

(12)

[L	$\begin{bmatrix} L_1 & H_1 \\ 1 & \sigma_1 \end{bmatrix} \begin{bmatrix} M \\ \frac{1}{2} \end{bmatrix}$	$\begin{bmatrix} 1 & M_1 \\ 1 & G_1 \end{bmatrix}$	± WWX 100	*Cont	100 100	-13 * 71	LXWW 24	
a.	L_1 L_1 H_2	$ \begin{array}{cccc} M_1 & M_1 \\ & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow \end{array} $				-1		-71
b.	$ \begin{array}{ccc} L_1 & L_1 \\ \sigma_1 & \sigma_1 \end{array} $	$M_1 M_1$ $G_1 G_1$	-1				-1	-124
c.	L_1 L_1 H_2	$M_1 M_1$		-1				-100
d.	L_1 H_1 G_1 G_1	$M_1 M_1$ $\sigma_1 \sigma_1$			-1		-1	-124
☞ e.	L_1 L_1 G_1 G_1	H_1 M_1 G_1 G_1					-1	-24

H-Spreading is avoidance of a marked tone sequence

- triggered by a markedness constraint against sequences of MH-tones inside a morpheme
- *[MH]: Assign X violation for every morpheme-internal sequence of M₁ and H₂ (13)where X is the shared activity of M_1 and H_2 .

(14)

$\begin{bmatrix} H_1 & H_1 H_1 \\ & \\ \sigma_1 & \sigma_1 \end{bmatrix} \begin{bmatrix} M_1 & M_1 H_1 \\ & \\ \sigma_1 & \sigma_1 \end{bmatrix}$	Н Ж Ч 100	71 71	[HW] _*	⊥xwW 24	
a. $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-2	-1		-170
b. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-1	-1	-1	-123
$\mathbb{F} c. \begin{array}{c cccc} H_1 & H_1 & H_1 & H_1 \\ & & & \\ & \sigma_1 & \sigma_1 & \sigma_1 & \sigma_1 \end{array}$		-1		-2	-119

No repair possible for *[MH] without a floating H

- simply deleting a tone is excluded by Specify (=Spec)
- deleting a tone and inserting one is excluded by DEPT
- spreading an underlying tone of the same morpheme is excluded by AITERNATION
- spreading an underlyingly associated tone of a preceding morpheme is excluded by *Long_{MBOUND} (15)
- *LGT_M: Assign X violations for every tone T₁ that is associated to two (15)a. TBU's τ_2 and τ_3 of different morphological affiliations where X is the shared activity of T_1 , τ_2 , and τ_3 .
 - b. **SPEC:** Assign 1-X violations for every TBU τ_1 where X is the activity of tone(s) associated to τ_1 .

No repair possible for *[MH] without a floating H

 M_1 H_1 $^* LGT_M$ [HW] * 28 (16)±XAM 54 ∠ SPEC 100 100 100 100 M_1 H_1 **☞** a. -1 -28 H_1 b. -1 -1 -124 H_1 c. -1 -1 -124 σ_1 ό1 σ_1 M_1 L_1 d. -1 -1 -124 ϕ_1 **φ**1 H_1 -31 -1 -1 e. $\dot{\sigma}_1$ σ1 σ_1

• partially active $H_{0.4}$ only triggers a -0.7 violation of *[MH] if it follows a base ending in M

Weighting argument: Too weak to be a trigger

- (17) Fully active H_1 *[MH] \gg MAX_T
- (18) Partially active $H_{0.4}$ $Max_T \gg 0.7x^*[MH]$
 - → the gradient violation of a markedness constraint is crucial: impossible under the original GSR proposal and only possible if elements can remain weakly active in the output

No spreading triggered by a partially active H_{0.4}

(19)*[MH] MAX_{H} MAX_T 28 100 71 24 $M_1 H_{0.4}$ a. -1.4 -0.7-119 r b. -0.7-0.4-48 $H_{0.4}$ -52,4 -0.4

Partially active H_{0.4} is only optionally realized

- crucial contrast: Unassociated H₁ violates *FLT by 1; unassociated H_{0.4} only by 0.4
- an unassociated partially active tone is **not as bad a problem** as a fully active one

(20)			Max _H 100	*FLт 71	*[MH] 28	Max _T 24	
	a.	$\begin{array}{c cccc} H_{0.4} & L_1 & L_1 \\ & & & \\ & \sigma_1 & \sigma_1 \end{array}$		-0.4			-28,4
	a.	H ₁ L ₁ L ₁ σ ₁ σ ₁		-1			-71

Intermezzo: Variation and constraint-based grammar models (Coetzee and Pater, 2011; Hayes, 2017)

- variability in OT: partial rankings (Kiparsky, 1993; Anttila, 1997; Anttila and Cho, 1998) or stochastic OT (Boersma, 1997, 1998; Boersma and Hayes, n.d.)
- variability in HG: Noisy Harmonic Grammar (Boersma and Weenink, 1992-2018; Boersma and Pater, 2016) or Maximum Entropy models (Johnson, 2002; Goldwater and Johnson, 2003; Wilson, 2006)
- the following is a MaxEnt-HG implementation where well-formedness is interpreted as probability
 - → only reasonable to some degree: no frequency/probalistic data for MOL

• calculated with the UCLA Maxent Grammar Tool (Hayes, 2009)

Constraint weights for MOL

(21)

Max _H	*FLT	*[MH]	Max _T	Spec	*HMH
113.00	71,00	28.06	24.07	6.80	1.56

- only three relevant candidates are shown in the following:
 - a. leaving the floating H unassociated: FL
 - **b.** associating the floating H to one TBU: OW
 - c. associating the floating H to both TBU's: OW+Spr
- all other candidates (e.g. those violating Max_H) have probabilities below 0,01

Partially active H_{0.4} is only optionally realized

Weighting argument: Too weak to be realized

- realization of H_{0.4} is not as important (for *FLT) as realization of H₁
- and realization of H_{0.4} induces additional -0.6 violations of Spec
- (22)Realization of fully active H₁ *Flt \gg Max_t
- (Non-)Realization of partially active H_{0.4} (23) $0.4x^*$ FLT $\sim 0.6x$ Spec + Maxt

Fully active H₁ is realized: Maxent probabilities

(24)

Partially active H_{0.4} is only optionally realized

(25)

Fully active H₁ as trigger for H-spreading

(26)

Partially active $H_{0.4}$ as non-trigger for H-spreading (of H_1)

(27)

Summary

Summary

- the optionally perturbing morphemes in MOL are exceptional for more than one phonological process
 - Strong argument for a representational account and vs. an account based on morpheme-specific constraints or constructions (=argument against lexically indexed constraints (e.g. Alderete, 2001; Pater, 2009; Finley, 2009)
 - MaxEnt can predict the asymmetry between being an exceptional obligatory non-trigger for one process and an exceptional optional undergoer for another one
- strengthened the argument for Gradient Symbolic Representations in the Output: the crucial trigger for the H-spreading is a markedness constraint

Eva.Zimmermann@uni-leipzig.de

References

- Alderete, John (2001), *Morphologically governed accent in Optimality Theory*, Routledge, New York.
- Anttila, Arto (1997), Deriving variation from grammar, *in F.Hinskens*, R.can Hout and L.Wetzels, eds, 'Variation, change, and phonological theory', John Benjamins, pp. 35–68.
- Anttila, Arto and Young-mee Cho (1998), 'Variation and change in Optimality Theory', Lingua 104, 31–56.
- Boersma, Paul (1997), 'How we learn variation, optionality and probability', *Proceedings of the Institute of Phonetic Sciences. University of Amsterdam* **21**, 43–58.
- Boersma, Paul (1998), Functional Phonology: Formalizing the interaction between articulatory and perceptual drives, Holland Academic Graphics, The Hague.
- Boersma, Paul and Bruce Hayes (2001), 'Empirical tests of the gradual learning algorithm', *Linguistic Inquiry* **32**, 45–86.
- Boersma, Paul and David Weenink (1992-2018), 'Praat: Doing phonetics by computer (computer program, version 6.0.36)', http://www.fon.hum.uva.nl/praat/.
- Boersma, Paul and Joe Pater (2016), Convergence properties of a gradual learning algorithm for Harmonic Grammar, *in* J.McCarthy and J.Pater, eds, 'Harmonic Grammar and Harmonic Serialism', Equinox, Sheffield, pp. 389–434.

- Coetzee, Andries W. and Joe Pater (2011), The place of variation in phonological theory, *in* J.Goldsmith, J.Riggle and A. C.Yu, eds, 'Phonological Theory', Wiley Blackwell, Oxford, p. ch.13.
- Dürr, Michael (1987), 'A preliminary reconstruction of the Proto-Mixtec tonal system', *Indiana* 11, 19-61.
- Faust, Noam and Paul Smolensky (2017), 'Activity as an alternative to autosegmental association', talk given at mfm 25, 27th May, 2017.
- Finley, Sara (2009), 'Morphemic harmony as featural correspondence', Lingua 119, 478-501.
- Finley, Sara (2010), 'Exceptions in vowel harmony are local', Lingua 120, 1549-1566.
- Goldsmith, John, ed. (1990), Autosegmental and Metrical Phonology, Oxford: Blackwell.
- Goldwater, Sharon and Mark Johnson (2003), Learning ot constraint rankings using a maximum entropy model, *in* J.Spenader, A.Eriksson and O.Dahl, eds, 'Proceedings of the Workshop on Variation within Optimality Theory', Stockholm University, Stockholm, pp. 111–120.
- Hayes, Bruce (2009), 'Manual for maxent grammar tool', online available at http://linguistics.ucla.edu/people/hayes/MaxentGrammarTool/ManualForMaxentGrammarTo
- Hayes, Bruce (2017), 'Varieties of noisy harmonic grammar', Proceedings of the Annual Meetings on Phonology, ISSN 2377-3324.

- Hollenbach, Barbara (2003), The historical source of an irregular Mixtec tone-sandhi pattern, in M. R.Wise, T.Headland and R.Brend, eds, 'Language and life: essays in memory of Kenneth L. Pike', SIL international, Dallas, pp. 535–552.
- Hout, Katherine (2017), 'Exceptional non-triggers in Bijagò', poster, presented at AMP 2017, New York, September 16, 2017.
- Hunter, Georgia and Eunice Pike (1969), 'The phonology and tone sandhi of Molinos Mixtec', Linguistics .
- Johnson, Mark (2002), Optimality-theoretic lexical functional grammar, in S.Stevenson and P.Merlo, eds, 'The Lexical Basis of Sentence Processing: Formal, Computational and Experimental Issues', John Benjamins, Amsterdam, pp. 59-73.
- Kiparsky, Paul (1993), 'An ot perspective on phonological variation', Handout from the Rutgers Optimality Workshop 1993.
- Kushnir, Yuriy (2017), 'Accent strength in Lithuanian', talk, given at the workshop on Strength in Grammar, Leipzig, November 12, 2017.
- Legendre, Geraldine, Yoshiro Miyata and Paul Smolensky (1990), 'Harmonic grammar a formal multi-level connectionist theory of linguistic well-formedness: Theoretical foundations', *Proceedings of the 12th annual conference of the cognitive science society* pp. 388–395.
- Lieber, Rochelle (1987), An Integrated Theory of Autosegmental Processes, SUNY Press.

- Mak, Cornelia (1950), 'A unique tone perturbation in Mixteco', *International Journal of American Linguistics* **16**, 82–86.
- McKendry, Inga (2013), Tonal Association, Prominence and Prosodic Structure in South-Eastern Nochixtlán Mixtec, PhD thesis, University of Edinburgh.
- Nformi, Jude and Sören Worbs (2017), 'Gradient tones obviate floating features in Oku tone sandhi', talk, given at the workshop on Strength in Grammar, Leipzig, November 10, 2017.
- Pater, Joe (2009), Morpheme-specific phonology: Constraint indexation and inconsistency resolution, *in* S.Parker, ed., 'Phonological Argumentation: Essays on Evidence and Motivation', Equinox, London, pp. 123–154.
- Pike, Kenneth L. (1944), 'Analysis of a Mixteco text', *International Journal of American Linguistics* **10**, 113–138.
- Potts, Christopher, Joe Pater, Karen Jesney, Rajesh Bhatt and Michael Becker (2010), 'Harmonic grammar with linear programming: From linear systems to linguistic typology', *Phonology* pp. 77–117.
- Rosen, Eric (2016), Predicting the unpredictable: Capturing the apparent semi-regularity of rendaku voicing in Japanese through harmonic grammar, *in* E.Clem, V.Dawson, A.Shen, A. H.Skilton, G.Bacon, A.Cheng and E. H.Maier, eds, 'Proceedings of BLS 42', Berkeley Linguistic Society, pp. 235–249.
- Smith, Caitlin (2017), 'Harmony triggering as a contrastive property of segments', Proceedings of AMP 2016.

- Smolensky, Paul and Matthew Goldrick (2016), 'Gradient symbolic representations in grammar: The case of French Liaison', *ROA 1286*.
- Tranel, Bernard (1995), 'Rules vs. constraints: a case study', ROA-72.
- Wilson, Colin (2006), 'Learning phonology with substantive bias: An experimental and computational study of velar palatalization', *Cognitive Science* **30**, 945–982.
- Wolf, Matthew (2007), For an autosegmental theory of mutation, *in* L.Bateman, M.O'Keefe, E.Reilly, and A.Werle, eds, 'UMOP 32: Papers in Optimality Theory III', GLSA, Amherst, MA, pp. 315–404.
- Zimmermann, Eva (2016), 'The power of a single representation: Morphological tone and allomorphy', *Morphology, special issue on allomorphy* **26**, 269–294.
- Zimmermann, Eva (2017*a*), 'Being exceptional is being weak: tonal exceptions in San Miguel el Grande Mixtec', poster, presented at AMP 2017, New York, September 16, 2017.
- Zimmermann, Eva (2017b), 'Being (slightly) stronger: Lexical stress in Moses Columbian Salish', talk, given at the workshop on Strength in Grammar, Leipzig, November 11, 2017.
- Zimmermann, Eva (2017c), 'Gradient symbolic representations in the output: A typology of lexical exceptions', talk, given at NELS 48, Reykjavik, October 29, 2017.
- Zimmermann, Eva (2017*d*), 'Gradient symbols and gradient markedness: a case study from Mixtec tones', talk, given at the 25th mfm, 27th May, 2017.
- Zoll, Cheryl (1996), Parsing below the segment in a constraint-based framework, PhD thesis, UC Berkeley.

Appendix: Partially active $H_{0.4}$ as non-trigger for H-spreading (of $H_{0.4}$)

(28)

$\begin{bmatrix} H_{0.4} \\ \end{bmatrix} \begin{bmatrix} L_1 & M_1 & H_{0.4} \\ J_1 & J_1 & \sigma_1 \end{bmatrix}$	Н	Probability
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-764,42	0,6666
B. H _{0.4} M ₁ H _{0.4} M ₁ H _{0.4} M ₁ H _{0.4}	-77,138	0,3322
c. $H_{0.4}$ $H_{0.4}$	-84,72	1,69E-4

Appendix: Partially active H_{0.4} as regular (?) undergoer of spreading

(29)

Appendix: Tone perturbation on the second TBU

CVCV-ML bases and CVCV-LL couplets become MH

(30) (Hunter and Pike, 1969, 36)

	M1	M2	Surface	Tones
a.	síví ^H	∫ī∫ì-są́	síví ∫ī∫í-są́	HH ^H +ML-H→HH M <mark>H</mark> -H
	'name'	'my aunt'	'my aunt's name'	
b.	ndūtē ^H	?ùvà	ndūtē ?ūvá	MM ^H +LL→MM MH
	'water'	'bitter'	'bitter water'	
c.	∫ùૃ?ūૃ ^Ħ	stōò-są́	∫ùृ?ūૃ stóò-sáॄ	LM ^H +ML-H→LM H L-H
	'money'	'my uncle'	'my uncle's money'	
d.	kītī ^H	kūù	kītī kúù	MM ^H +ML→MM HL
	ʻanimal'	'to die'	'the animal will die'	

Appendix: Markendess constraints and GSRO

- (31) *M

 Assign X violation for every configuration M where X is the combined activity of all elements that are non-contextual parts of this configuration.
- (32) M!
 Assign 1-X violation for every configuration N where X is the activity of structure M in N.

Appendix: Surface restrictions for tones

- three types of morphemes: A, B, and minor class B'
- MH is among the less frequent tone specifications for couplets...(but M-final ones with floating tones are very well possible)
- (33) Morpheme classes and their tones

А	В	B'				
LM						
Н						
M						
L						
MH						
LH						
НМ						
HL						
ML						