#### Mora Maraudage in Piro

Eva Zimmermann (University of Leipzig)

OCP 8

January 21, 2011

#### The Aim

- a morpheme-specific process of vowel syncope in Piro
  - ⇒ it is predicted from the underlying representation of morphemes and their moraic specification
  - ⇒ rather than from indexing certain morphemes to specific rules in an arbitrary fashion (Kisseberth 1970, Lin 1997, Pater 2007)

#### Piro (today: Yine)

- Arawakan language spoken in Peru
- The following data is taken from Matteson (1965), Lin (1997) and Pater (2007)

## mSuffixes trigger vowel deletion

- before certain suffixes, a preceding vowel is deleted (='mSuffixes', underlined in the following)
- (1) mSuffixes trigger deletion
  - a. of a stem vowel

```
neta+<u>ya</u> netya 'I see there'
kama+<u>lu</u> kamlu 'handicraft'
pawata+<u>maka</u> pawatmaka 'I would have made a fire'
hata+nu hatnu 'light, shining'
```

b. of an affix vowel

```
meyi+wa+lu meyiwlu 'celebration'
```

neta+nu+<u>lu</u> netanru 'I am going to see him'

#### mSuffixes: Main Claim

 vowel length in Piro is phonemic: vowels are underlyingly specified for one/two moras

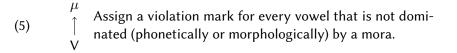
$$\mu$$

■ the mSuffixes have an underlyingly floating mora in their structure that is not associated with a vowel

#### Main Assumptions

- Morphological Colours
- Containment
- Containment for Association Lines

#### I. Morphological Colours (Oostendorp 2006a+b)


- every morpheme = one specific 'colour' that is present on all phonological elements that are affiliated with this morpheme
- epenthetic elements = colourless
- this e.g. allows an easy implementation of a constraint deriving Derived Environment Effects (Lubowicz 2002, Anttila 2005, Oostendorp 2008)
- (2) ALTERNATION (=ALT) Oostendorp 2006b If an association line links two elements of colour  $\alpha$ , the line should also have colour  $\alpha$ .

#### Ila. Containment (Prince & Smolensky 1993)

- (3)Containment Every element of the phonological input representation is contained in the output.
  - all input elements must still be present in the output but can be marked as phonetically invisible
  - elements that are invisible for the phonetics = elements that are not properly integrated into the prosodic structure, i.e. not dominated by the highest prosodic word node

#### Ilb. Containment (Prince & Smolensky 1993)

■ realization of segments is therefore a consequence of proper integration ensured by e.g. (4) and (5)



• the latter one is a less restrictive version demanding only *any* association (a phonetically invisible one as well)

#### III. Containment for Association Lines

(Goldrick 2001, Revithiadou 2007)

 all association relations that were present underlyingly must be kept in the structure although they can be marked as phonetically invisible

#### (6) Marking conventions for different types of association lines

| Morphological as      | ssociation relations    | Epenthetic association relations |   |  |
|-----------------------|-------------------------|----------------------------------|---|--|
| phonetically visible: | phonetically invisible: | phonetically visible:            | ĺ |  |
| X                     | X                       | X                                | ĺ |  |
|                       | <b> </b>                | :                                | ĺ |  |
| 1                     | <u>.</u>                | <u>:</u>                         |   |  |
| Y                     | Y                       | Y                                |   |  |

### Markedness for 1-many association

moras cannot be (phonetically) associated with more than one vowel due to the markedness constraint in (7)

(7) 
$$v^{\mu}$$

Assign a violation mark for every mora that is phonetically associated to more than one vowel.

## Mora Maraudage



- the mSuffixes have an underlyingly floating mora in their structure that is not associated with a vowel
  - ⇒ since the affix vowel must be dominated by a mora but cannot associate to its own, it 'maraudes' the mora of the preceding vowel

# mSuffix maraudes (stem) mora

| $\mu_{s}  \mu_{s}  \mu_{1}$ $I  I$ $k_{s}  a_{s}  m_{s}  a_{s}  I_{1} u_{1}$                                | μ<br>↑<br>V | $_{v}^{\mu}{}_{v}$ | Dер- $\mu$ | Ацт | Max-V |
|-------------------------------------------------------------------------------------------------------------|-------------|--------------------|------------|-----|-------|
| $\mu_{s}  \mu_{s}  \mu_{1}$ a. $I  I$ $k_{s} a_{s} m_{s} a_{s}  I_{1} u_{1}$                                | *!          |                    |            |     | *     |
| b. $ \begin{matrix} \mu_s & \mu_s & \mu_1 \\ I & I^{**}\cdots \\ k_s & a_s m_s a_s & I_1 u_1 \end{matrix} $ |             | *!                 |            |     |       |
| d. $ \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                     |             |                    | *!         |     |       |
| c. $\mu_{s}  \mu_{s}  \mu_{1}$<br>$k_{s}  a_{s}  m_{s}  a_{s}  l_{1}  u_{1}$                                |             |                    |            | *!  |       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                        |             |                    |            |     | *     |

## Multiple Mora Maraudage

(8) More mSuffixes
nika+ya+waka+lu nikyawaklu 'to eat it there'

three mSuffixes are added and two vowels are deleted

## Analysis: more mSuffixes

|                                                      | μ<br>↑<br>V | Dep- $\mu$ | Ацт | Max-<br>V |
|------------------------------------------------------|-------------|------------|-----|-----------|
| a.                                                   | *!          |            |     | **        |
| b.                                                   |             | *!         |     | *         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |             |            |     | **        |

## Blocking of vowel deletion

- 3-C-cluster are generally prohibited in Piro
- if the mSuffix-triggered vowel deletion would result in such a structure, the vowel is retained
- (9) The expected vowel deletion is blocked

terka+<u>lu</u> terkalu 'she washes it'

\*terklu

terkit

koko+<u>yma</u>+<u>ru</u>+ne kokoymarune 'those with uncles'

\*kokymrune

## Blocking: ALT might be violated to avoid a 3-C-cluster

|      |                                                       | *CCC      | $\begin{matrix} \mu \\ \uparrow \\ V \end{matrix}$ | Ацт | Max-V |
|------|-------------------------------------------------------|-----------|----------------------------------------------------|-----|-------|
| a.   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$  |           | *!                                                 |     | *     |
| b.   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$  | *! !<br>! |                                                    |     | *     |
| № C. | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |           |                                                    | *   |       |

### Blocking: Even more Alt-violations

|      |                                                                                                                                                                     | *CCC | $egin{array}{c} \mu \ \uparrow \ V \end{array}$ | Ацт | Max-V |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------------------------|-----|-------|
| a.   | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                               | *!   | *                                               |     | *     |
| b.   | $\mu_{s}$ $\mu_{s}$ $\mu_{1}$ $\mu_{2}$ $\mu_{3}$ $\downarrow$ $\uparrow$ $\vdots$ | *!   |                                                 |     | *     |
| 喀 C. | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                |      |                                                 | *** |       |

#### Conclusion

- the difference between 'triggering' and 'non-triggering' suffixes is attributed to the underlying representation of morphemes: is the affix vowel underlyingly associated with its mora or not
- the assumption of containment and the fact that structure may never
  be literally deleted straightforwardly predicts such a system
  =there are constraints about *all* structure irrespective of its visibility for
  the phonetics

### Compensatory lengthening after C-loss

- 2-C-clusters are restricted (examples):
  - no adjacent identical consonants
  - a fricative is never followed by another fricative
  - a fricative is never followed by a homorganic affricate or /ts/
- non-initially, those clusters are always derived from mSuffix-triggered vowel deletion
- whenever the first member of such an illicit cluster is an obstruent, it is deleted
- in addition, the preceding vowel is deleted

## C-Deletion and Lengthening

(10)Illicit CC-Cluster is repaired nika+ka nizka 'he is eaten' \*nikka 'foot' \*xitxtši xitxi + tši xiːtši \*hirreta hira+re+ta hiːreta 'to drink' hitsrukate+tši hitsrukaztši 'chief' (Abs) \*hitsrukattši

## Compensatory lengthening

#### 'Standard explanation'

After coda-loss, a mora originally dominating the deleted consonant reassociates to a vowel ???

- when is the phonetically invisible consonant ever syllabified as coda and assigned to a mora in a parallel system?
- there is no evidence that codas are moraic: Piro has a quantity-insensitive trochaic stress system

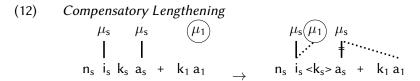
## Compensatory lengthening

#### An Alternative

X-slots and the assumption of timing units for every segment = compensatory lengthening is predicted after every segment deletion. (may even exist in a combined model assuming moras and X-slots as e.g. Hume et al. 1997)

#### Another alternative

the lengthening mora is actually a floating mSuffix mora that is free to associate after C-deletion.


 this presupposes revision of our understanding of ordering of elements in containment theory

### Mora Infixation: Assumptions

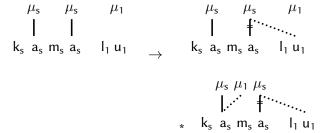
#### (11) Inviolable ordering in containment

- segments are ordered to each other and this order may never be reversed.
- morphologically coloured prosodic elements of the same colour are ordered to each other and this order may never be reversed.
- the segmental tier as backbone for the ordering
   =prosodic nodes belonging to different morphemes are ordered if they are associated to a segment
- morphologically coloured prosodic elements that are not associated to a segment are free to infix
  - (cf. infixation of moras in e.g. Shizuoka Japanese (Stuart & Davis 2001))

#### Mora Infixation



\* But wouldn't we except lengthening of the preceding vowel in the presence of every mSuffix irrespective of any C-deletion?


## Mora Infixation: Assumptions II

■ in addition to the assumption of the segmental backbone for ordering that something ensures morphemic contiguity – even across tiers

Assign a violation mark for every instance where a segment of another morphological colour  $_b$  that is not dominated by any  $X_a$  stands between the left(right)most segment  $S_a$  and the right(left) most segment that is dominated by  $X_a$ .

## Analysis: Lengthening only after C-deletion

 the consonant that becomes phonetically invisible allows that the floating mSuffix mora associates



#### References

- Anttila, Arto (2005), 'Derived environment effects in Colloquial Helsinki Finnish', The Nature of the Word: Essays in Honor of Paul Kiparsky.
- Davis, Stuart and Isao Ueda (2006), 'Prosodic vs. morphological mora augmentation', Lexicon Forum 2, 121-143
- Goldrick, Matthew (2001), Turbid output representations and the unity of opacity, in 'Proceedings of NELS 30', Amherst, MA: GLSA, pp. 231-245.
- Kisseberth, Charles (1970), 'The treatment of exceptions', Papers in Linguistics 2, 44D58.
- Lin, Yen-Hwei (1997), 'Syllabic and moraic structures in Piro', Phonology 14, 403D436.
- Lubowicz, Anna (2002), 'Derived Environment Effects in Optimality Theory', Lingua 112, 243D280.
- Matteson, Esther (1965), The Piro (Arawakan) Language, Berkeley: University of California Press,
- McCarthy, John and Alan Prince (1993b), Prosodic Morphology, Constraint Interaction and Satisfaction, ROA 485-1201
- McCarthy, John and Alan Prince (1994), Prosodic Morphology, in J.Goldsmith, ed., 'A Handbook of Phonological Theory', Oxford: Basil Blackwell, pp. 318-366
- Pater, loe (2007), Morpheme-specific phonology: Constraint indexation and inconsistency resolution, in S.Parker, ed., 'Phonological Argumentation: Essays on Evidence and Motivation', London: Equinox. To appear.
- Prince, Alan and Paul Smolensky (1993), 'Optimality theory: Constraint interaction in generative grammar', Technical reports of the Rutgers University Center of Cognitive Science.
- Revithiadou, Anthi (2007), Colored turbid accents and containment: A case study from lexical stress, in S.Blaho, P.Bve and M.Kramer, eds, 'Freedom of Analysis?', Berlin & New York: Mouton De Gruyter, pp. 149-174.
- Samek-Lodovici, Vieri (1992), A Unified analysis of crosslinguistic morphological gemination. Proceedings of CONSOLE-1 Utrecht
- van Oostendorp, Marc (2006), A Theory of Morphosyntactic Colours. Ms., Meertens Institute, Amsterdam.
- van Oostendorp, Marc (2006b), 'Transparant morphology causes phonological opacity', Paper presented at the 2006 GLOW Workshop on Phonological Opacity.
- van Oostendorp, Marc (2008), Derived environment effects and consistency of exponence, in S.Blaho, P.Bye and M.Krämer, eds, 'Freedom of Analysis?', Berlin: Mouton de Gruyter, pp. 123-148.
- Zonneveld, Wim (1982), 'The descriptive power of the Dutch theme-vowel', Spektator 11, 342-365.