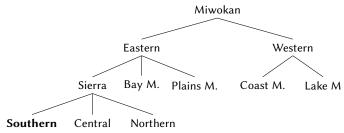
Templates as affixation of segment-sized units: the case of Southern Sierra Miwok

Eva Zimmermann (University of Leipzig)

Old World Conference in Phonology 9

January 18, 2012


Main Claim

- templatic effects in Southern Sierra Miwok (SSM) follow from affixation of moras and underspecified segments
- this avoids the assumptions of a syllabified X-Slots representation a previous analysis of SSM argue for (Sloan, 1991)

Affixation of segment-sized phonological elements predicts 'templatic effects' over whole strings of segments

Southern Sierra Miwok

(1) Miwokan (Penutian) family tree

- 7 speaker in 1994 (Hinton 1994)
- described in Freeland (1951) and Broadbent (1964)
- analyses of lengthening phenomena in Sloan (1991), Brown (2004)

'Templates' in SSM

(2) a. halik-iH-hiY-? 'he used to hunt'

(Sloan 1991, pp.152-154)

- b. halik-meh-nY-haHk-te-?
 - 'I was hunting on my way'
- c. halki-paH
 - 'a good hunter'
- d. haːlik-teː-nY
 - 'to hunt along the trail'
- many suffixes in SSM require that the roots to which they attach must conform to a particular shape: template-requiring affixes (cf. also Yawelmani, e.g. Archangeli 1991)

2. The Data

Three LH templates as a challenge for theoretical analysis

Three classes of LH-requiring affixes

(Sloan 1991, pp.172-177)

(3) Affix -peH 'agentive'

> halik-peH 'hunter' a. b. ?okoj-peH 'a nurse' class I liwa?-peH 'speechmaker' **→** CVCVC

d. koto?-peH 'guide'

(4) Affix -t 'to do what is characteristic of ...'

> wyliz-t 'to flash, of lightening' a.

b. paTy:-t 'to take, accept'

pulu:-t c. 'to dip up'

molix-t d. 'shade'

(5) Affix -na 'benefactive'

> kojow-na 'to tell for someone' a.

h. hekaː-na 'to clean for someone'

c. juwal-na 'to stir for someone'

d. TeTy:-na 'to gather for someone'

class II

→ CVCV:

class III → CVCVC or

CVCV:

Three classes of LH-requiring affixes (Broadbent 1964, Sloan 1991

(6) LH templates: examples

follower		followed by	followed by	followed by						
class I affix		class I affix	class II affix	class III affix						
	Biconsonantal stems									
a.	liw:a	liwa?	liwaː	liwar						
b.	b. pel:e pele?		peleː	peleː						
c.	koːl	kolu?	koluː	koluː						
		Three-conso	onantal stems							
e.	wylizp	wylip	wylix	wylip						
f.	halki	halik	haliː	halik						
g.	wyks	wykys	wyky:	wykys						

degemination, vowel shortening, consonant deletion, insertion of /y/ or /?/, vowel lengthening or CV metathesis apply to ensure that the stem conforms to the templatic requirement

Various strategies to achieve LH template

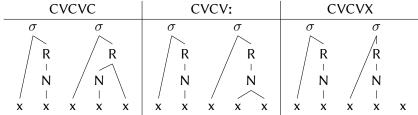
(7) Phonological changes

exa	mple		meta.	+ ?	+ y	short.	C-del.	leng.	degem.
a.	?amla	?amal (I)	✓	Х	Х	Х	Х	Х	Х
b.	wyks	wykys (I)	Х	X	✓	Х	X	X	X
c.	wyli:p	wylip (I)	Х	Х	Х	1	Х	Х	Х
d.	helarj	helaː (II)	Х	X	X	X	✓	X	Х
e.	hekːa	heka? (I)	Х	1	Х	X	X	X	✓
f.	horja	hoja? (I)	X	X	✓	✓	X	X	Х
g.	polat	pola: (II)	Х	Х	Х	Х	1	1	Х
h.	hekɪa	hekaː (II/III)	Х	X	X	X	Х	1	1
i.	cyɪm	cymy? (I)	Х	1	1	✓	Х	X	Х
j.	cyːm	cymy: (II)	Х	Х	1	1	X	1	Х
k.	pult	puluː (III)	Х	Х	1	X	1	1	Х

Three LH templates in SSM

(8) The three LH templates

	biconsonantal stem	three-consonantal stem
class I requires	CV.CVC	CV.CVC
class II requires	CV.CV:	CV.CV:
class III requires	CV.CV:	CV.CVC


Representing the three LH templates?

 in standard moraic theory, light (μ) and heavy (μμ) syllables are distinguishable but the difference between heavy CVC and CV: cannot be coded

The analysis in Sloan (1991)

 the need to distinguish C- and V-final stems (class I/II) is taken as an argument for X-Slot theory and the LH templates are represented as (partially) syllabified sequences of X-Slots

(9) LH templates: representation in Sloan (1991)

3. Analysis

Predicting the templatic effects in SSM through affixation of segment-sized units

Avant: lambic lengthening

(Callaghan 1978, Hayes 1995)

- main stress in SSM is always on the first heavy syllable and must be on the first or second
- only heavy syllables are stressable

LH templates as affixation of segment-sized units

- Prefixation of a μ moraic overwriting: the first syllable is light
- Suffixation of defective C/V segments in class I/II defective segments specified as C or V must be realized stem-final

3.1. Prefixation of a μ

1 A prefixed mora causes the first σ to be short.

A prefixed μ ...

- affixation of moras is proposed in various analyses of non-concatenative morphology
 (e.g. Davis&Ueda 2002, Grimes 2002, Davis Ueda 2006, Seiler 2008 or Zimmermann&Trommer 2010)
- must be realized at the left edge of the stem,
 i.e. dominate the first vowel

A prefixed μ ...

is the only possible μ in a syllable:

(10)DEPLINK-µ]_o (e.g. Morén 1999 for DepLinku) Assign a violation mark for every inserted association line between μ and a segment that is not at the right edge of a syllable.

(=DL]

- 'inserted' = an association line that was not present in the input
- this faithfulness constraint demands that modifications of the prosodic structure are preferred at the right edge of a syllable
 - **→** prominence by position

Constraints ensuring realization of μ

Max-μ

Assign a violation mark for every $\boldsymbol{\mu}$ in the input without an output correspondent.

 $Max\text{-}\mu_{AF}$

Assign a violation mark for every affix $\boldsymbol{\mu}$ in the input without an output correspondent.

Prefixation of a mora

(11) Moraic Overwriting

	(μ) μ μ μ h o j a + p e H	Max-µ _{AF}	DL]	Мах-µ
a.	μ μ μ h o j a p e H	*!	 	*
b.	μ μ μ h o j a p e H		*!	
(№) c.	μ μ h o j a p e H			*

(underlyingly unassociated μ are circled)

Constraints responsible for iambic lengthening

ALL-FT-L (McCarthy&Prince 1993)

Assign a violation mark for every left edge of a foot that is not aligned with the left edge of a prosodic word.

RHT:I (Kager 1993)

Assign a violation mark for every foot with non-final prominence.

STRESS-TO-WEIGHT (Kager 1999)

Assign a violation mark for every stressed syllable that is not heavy (= 2μ).

Dep- μ (e.g. Morén 1999)

Assign a violation mark for every μ in the output that has no input correspondent.

 ${\sf PARSE-\sigma} \qquad \qquad {\sf (Prince\&Smolensky~1993,\,McCarthy\&Prince~1993)}$

Assign a violation mark for every syllable that is not parsed into a foot.

lambic Lengthening

 \dots and if the first σ is light, the second is necessarily heavy!

(12) *lambic Lengthening in SSM*

			I	Stress-to		l
μ + hojapeH		ALL-FT-L	RHT:I	WEIGHT	Dep-μ	Prs-σ
a.	ho ^μ (ja.péH)	*!	l	*		*
b.	(hó ^µ .ja)peH		*!	*		*
c.	(ho ^µ .já)peH		ı	*!		*
d.	(hóːμ)ja.peH		l	İ	*	**!
™ e.	(ho ^µ .jáː)peH		l I		*	*

(if an underlyingly unassociated μ links to an output segment: notated as $X^{\mu}\!)$

3.2. Suffixation of C/V nodes

Suffixation of defective C/V segments in class I/II ensure that the stem must end in a C/V

 defective segmental root nodes are assumed to result in mutation, reduplication or insertion

```
(e.g. Bye&Svenonius to appear, Bermúdez-Otero to appear)
```

• in SSM, they have a minimal feature specification characterizing them as either obstruents/sonorants/glides or as vowel

```
(13) [+vocalic] (Padgett 2007, Nevins&Chitoran 2007) =Absence of a narrow constriction among the articulators
```

 specifications for the missing features are required by constraints like HAVEPLACE

(15) Example: Representation for suffix class I /-pex/

⇒ abbreviated as: [-voc] p e

are realized

	as underspecified	
	default segment, or	as fused segment
	• _X	• _X
	h ₁ o ₂ j ₃ a ₄ + ^[-voc]	$p_1o_2l_3a_4t_5 + [-voc]$
	\	\
	$h_1o_2j_3a_4?_x$	$p_1o_2I_3a_4t_{5,x}$
violates:	e.g. HavePlace	Uniformity

are part of the following suffix and must be realized at the right edge of the stem

O-Contiguitiy (=O-Cont) (16)(Landmann 2002) Assign a violation mark for every instance where phonological portions in the output that belong to the same morpheme do not form a contiguous string. ('No M-internal insertion.')

Constraints responsible for iambic lengthening

 $Max-S_{AF}$

Assign a violation mark for affix segment in the output without an input correspondent.

IDENT-[VOCALIC] (=ID-[VOC])

(McCarthy&Prince 1995+1999)

Assign a violation mark if an input segment corresponds to an output segment with a different value for $[\pm voc]$.

HavePlace (=HavPl)

(e.g. Padgett 1995, McCarthy 2008)

Assign a violation mark for every segment that has no place specification.

UNIFORMITY (=UNIF)

(McCarthy)

Assign a violation mark for every output segment that corresponds to more than one input segment.

Demand to end in a C: realization of a default segment

(17) Realization of a defective C

$\mu + h_1 o_2 j_3 a_4 + \begin{bmatrix} \bullet_x \\ [-voc] \end{bmatrix} p_y e_z$	Max-S _{AF}	O-Cont	ID-[voc]	HavPl	Unif
a. $h_1 o_2^{\mu}.j_3 \acute{a}!_4.p_y e_z$	*!	l	l		
b. $h_1 o_2^{\mu}.j_{3,x} \acute{a}i_4.p_y e_z$		*!			*
c. $h_1 o_2^{\mu}.j_3 \acute{a} i_{4,x}.p_y e_z$		 	*!		*
$rac{1}{2}$ d. $h_1 o_2^{\mu} . j_3 \acute{a}_4 ?_x . p_y e_z$				*	

3.2. Satisfaction of the templatic requirement

Different phonological strategies apply to ensure satisfaction of the templatic requirement

Summarizing the ranking

(18)

Moraic Overwriting results in LH

		Stress-to						
μ + hek:a	ALL-FT-L	! RнT:I	WEIGHT	Max-μ _{AF}	DL]	Дер-μ		
a. hekːa		I	l	*!	l			
b. he ^µ ka		1	*!	I I	l I			
☞ c. he ^μ ka	ː	ſ	I	I	I	*		

Summarizing the ranking

(19)

C/V must be realized in final position

$\mu + \text{hoja} + \frac{\bullet_x}{[-\text{voc}]} \text{peH}$	LH	Max-Sae	O-Cont	 Ip[voc]	HavPl	Unif
a. ho ^µ japeH		*1				
b. ho ^µ j _x apeH		•	*!	 		*
c. ho ^µ ja _x peH			<u> </u>	*!		*
r d. ho ^μ ja? _x peH					*	*

Example I: Insertion of /y/

(20) wyks realized as wykys before class I suffix

$\mu + wyks + \frac{\bullet_x}{[-voc]} kuH$	LH	C/V	HavPl	Unif	Max-C	LIN
a.* wýks.kuH		Max		• • • • • • • • • • • • • • • • • • • •		
b.* wý ^µ ks. _x kuH	DL]!	 		*		
c. wý ^µ k.syʔ _x .kuH	DL]!	 	**		 	
r d. wy ^μ .kýs. _x kuH			*	*		1

(Nota that CCC cluster are independently impossible in SSM)

Example II: metathesis

?amla realized as ?amal before class I suffix (21)

• _X		l			l I	I
μ + ?amla + $[-voc]$ kuH	LH	C/V	HavPl	Unif	Max-C	Lin
a. ?á ^µ m.l _x a.kuH	DL]!	Cont		*	l	l
b. ʔá ^µ .l _x a.kuH	StW!	Cont!		*	I	l I
c. ʔá ^µ .laʔ _x .kuH		l I	*!		*	l I
r d. ?a ^μ .mál _x .kuH		 		*	1	*

Example III: Shortening, insertion of /y/ and /?/

(22) cy:m realized as cymy? before class I suffix

$\mu + cy:m + \frac{\bullet_x}{[-voc]} k$	uH LH	C/V	HavPl	Unif	Max-C	Lin
a.* cýːʰm _x .kuH	DL]!	İ		*		l
b. cý ^µ m _x .kuH	DL]!	I		*	l	l
c. cy ^µ .m _x ý.kul	H StW]!	Cont!	*	*		l I
r d. cy ^μ .mý? _x .kι	ıН	I	**			

(*CV:C syllables are independently impossible in SSM)

Example IV: C-Deletion

hela:j realized as hela: before class II suffix (23)

$\mu + \text{hela:}j + \frac{\bullet_x}{[+\text{voc}]}t$	LH	C/V	HavPl	Unif	Max-C	Lin
a. he ^µ .laː _x jt		Cont!		*		
b. he ^µ .laːj _x t		ld!		*		
r c. he ^μ .laː _x t				*	*	

4. Broaden the view

Affixes triggering lengthening in SSM

Lengthening suffixes in SSM

- recall that DepLink-μ] results in overwriting if a μ is prefixed
- but there are actually affixes that trigger lengthening, i.e. where a μ is apparently added to the stem!

(24) Lengthening suffixes in SSM

(Bradbent 1964:48, 106)

- a. ?enup-:eni:te-??enup:eni:te?'I chased you'
- b. kel:a-na-:me? kel:ana:me? 'It snowed on us'

Lengthening suffixes in SSM

(25) A floating μ in the representation of a lengthening suffix

μ (μ) μ n a + m e ?		Max-µ _{Af}	DL]	Мах-µ
a.	μ μ n a m e ?	*!	 	*
rs b.	μμ n a m e ?		 	
c.	μ μ n a m e ?			*!

Moraic prefixes overwrite and moraic suffixes lengthen

		Max-μ _{AF}	DL]	Мах-µ	
Lengthening					
a.	μ μ n a m e ?	*!	 	*	
r⊠ b.	μ <u>μ</u> μ n a m e ?		 		
c.	μ μ n a m e ?		 	*!	
Overwriting					
a.	μ μ μ 	*!	 	*	
b.	μ μ μ h o j a p e H		*!		
® C.	μ μ 		 	*	

(26)

Conclusion

- templatic effects in Southern Sierra Miwok (SSM) are the consequence of the affixation of moras and underspecified segments
- this analysis is based exclusively on the affixation of segment-sized units and avoids the assumptions of syllabified X-Slot positions in the representation of morphemes
- this unifies analysis for templatic effects with the analysis of other lengthening phenomena in the language that are based on the assumption of floating moras as well