Templates as affixation of segment-sized units: the case of Southern Sierra Miwok

Eva Zimmermann (University of Leipzig)

Old World Conference in Phonology 9

$$
\text { January 18, } 2012
$$

Main Claim

- templatic effects in Southern Sierra Miwok (SSM) follow from affixation of moras and underspecified segments
- this avoids the assumptions of a syllabified X-Slots representation a previous analysis of SSM argue for (Sloan, 1991)

Affixation of segment-sized phonological elements predicts 'templatic effects' over whole strings of segments

Southern Sierra Miwok

(1) Miwokan (Penutian) family tree

- 7 speaker in 1994 (Hinton 1994)
- described in Freeland (1951) and Broadbent (1964)
- analyses of lengthening phenomena in Sloan (1991), Brown (2004)

‘Templates’ in SSM

a. hal:ik-iH-h:Y-?
'he used to hunt'
b. halik-meh-nY-haHk-te-?
'I was hunting on my way'
c. halki-paH
'a good hunter'
d. ha:lik-te:-nY
'to hunt along the trail'

- many suffixes in SSM require that the roots to which they attach must conform to a particular shape: template-requiring affixes (cf. also Yawelmani, e.g. Archangeli 1991)

2. The Data

Three LH templates as a challenge for theoretical analysis

Three classes of LH-requiring affixes

(3) Affix - peH 'agentive'
a. halik-peH
b. Tokoj-peH
c. liwa?-peH
d. koto?-peH
'hunter'
'a nurse'
'speechmaker'
'guide’
class I
\Rightarrow CVCVC
class II
= CVCV:
'to dip up'
'shade'
(5) Affix -na 'benefactive'
a. kojow-na
b. heka:-na
c. juwal-na
d. TeTy:-na
'to tell for someone'
'to clean for someone' 'to stir for someone' 'to gather for someone'

Three classes of LH-requiring affixes

(6) LH templates: examples
\($$
\begin{array}{|l|l|l|l|}\hline & & \begin{array}{l}\text { followed by } \\
\text { class I affix }\end{array} & \begin{array}{l}\text { followed by } \\
\text { class II affix }\end{array}\end{array}
$$ \begin{array}{l}followed by

class III affix\end{array} \left\lvert\,\)| Biconsonantal stems | | | |
| :--- | :--- | :--- | :--- |
| a. liw:a | liwa? | liwa: | liwa: |
| b. | pel:e | $\begin{array}{l}\text { pele? } \\ \text { c. } \\ \text { ko:l }\end{array}$ | $\begin{array}{l}\text { pele: } \\ \text { kolu? }\end{array}$ | \(\left.\begin{array}{l}pele:

kolu:\end{array}\right.\right]\)

- degemination, vowel shortening, consonant deletion, insertion of /y/ or $/ R /$, vowel lengthening or CV metathesis apply to ensure that the stem conforms to the templatic requirement

Various strategies to achieve LH template

(7) Phonological changes

example		meta.	$+?$	$+y$	short.	C-del.	leng.	degem.
a.	Pamla	Ramal (I)	\checkmark	X	X	X	X	X
b.	wyks	wykys (I)	X	X	\checkmark	X	X	X
c.	wyli:p	wylip (I)	X	X	X	\checkmark	X	X
d.	hela:j	hela: (II)	X	X	X	X	\checkmark	X
e.	hek:a	heka? (I)	X	\checkmark	X	X	X	X
f.	ho:ja	hoja? (I)	X	X	\checkmark	\checkmark	X	X
g.	polat	pola: (II)	X	X	X	X	\checkmark	\checkmark
h.	hek:a	heka: (II/III)	X	X	X	X	X	\checkmark
i.	cy:m	cymy? (I)	X	\checkmark	\checkmark	\checkmark	X	X
j.	cy:m	cymy: (II)	X	X	\checkmark	\checkmark	X	\checkmark
k.	pult	pulu: (III)	X	X	\checkmark	X	\checkmark	\checkmark

Three LH templates in SSM

(8) The three LH templates

	biconsonantal stem	three-consonantal stem
class I requires	CV.CVC	CV.CVC
class II requires	CV.CV:	CV.CV:
class III requires	CV.CV:	CV.CVC

Representing the three LH templates?

- in standard moraic theory, light (μ) and heavy ($\mu \mu$) syllables are distinguishable but the difference between heavy CVC and CV: cannot be coded

The analysis in Sloan (1991)

- the need to distinguish C- and V-final stems (class I/II) is taken as an argument for X-Slot theory and the LH templates are represented as (partially) syllabified sequences of X-Slots

LH templates: representation in Sloan (1991)

3. Analysis

Predicting the templatic effects in SSM through affixation of segment-sized units

Avant: Iambic lengthening

- main stress in SSM is always on the first heavy syllable and must be on the first or second
- only heavy syllables are stressable

LH templates as affixation of segment-sized units

(1) Prefixation of a μ moraic overwriting: the first syllable is light
(2) Suffixation of defective C / V segments in class I/II defective segments specified as C or V must be realized stem-final

3.1. Prefixation of a μ

(1) A prefixed mora causes the first σ to be short.

A prefixed $\mu . .$.

- affixation of moras is proposed in various analyses of non-concatenative morphology
(e.g. Davis\&Ueda 2002, Grimes 2002, Davis Ueda 2006, Seiler 2008 or Zimmermann\&Trommer 2010)
- must be realized at the left edge of the stem, i.e. dominate the first vowel

A prefixed $\mu \ldots$

■ is the only possible μ in a syllable:
(10) DepLink- $\mu]_{\sigma}$ (e.g. Morén 1999 for DepLinku)

Assign a violation mark for every inserted association line between μ and a segment that is not at the right edge of a syllable.

- 'inserted' = an association line that was not present in the input
- this faithfulness constraint demands that modifications of the prosodic structure are preferred at the right edge of a syllable
\Rightarrow prominence by position

Constraints ensuring realization of μ

Max- μ

Assign a violation mark for every μ in the input without an output correspondent.
$\operatorname{MAX}-\mu_{\mathrm{AF}}$
Assign a violation mark for every affix μ in the input without an output correspondent.

Prefixation of a mora

(11) Moraic Overwriting

	MAX- $\mu_{\text {AF }}$	DL]	Max- μ
a.	*!		*
b.			
			*

(underlyingly unassociated μ are circled)

Constraints responsible for iambic lengthening

All-Ft-L
(McCarthy\&Prince 1993)
Assign a violation mark for every left edge of a foot that is not aligned with the left edge of a prosodic word.

RнT:I
(Kager 1993)
Assign a violation mark for every foot with non-final prominence.
Stress-to-Weight
(Kager 1999)
Assign a violation mark for every stressed syllable that is not heavy $(=2 \mu)$.
Dep- μ
(e.g. Morén 1999)

Assign a violation mark for every μ in the output that has no input correspondent.

Parse- σ
(Prince\&Smolensky 1993, McCarthy\&Prince 1993)
Assign a violation mark for every syllable that is not parsed into a foot.

Iambic Lengthening

\ldots and if the first σ is light, the second is necessarily heavy!
(12) Iambic Lengthening in SSM

$\mu+$ hojapeH	All-Ft-L	RнT:I	Stress-to	Dep- μ	$\text { Prs- } \sigma$
			Weight		
a. $\mathrm{ho}^{\mu}(\mathrm{ja.péH})$	*!		*		*
b. (hó $\left.{ }^{\mu} . j a\right) p e H$		*!	*		*
c. (ho ${ }^{\mu} . j a^{\prime}$)peH			*!		*
d. (hó: ${ }^{\mu}$)ja.peH				*	**!
e. (ho ${ }^{\mu}$.já:) peH				*	*

(if an underlyingly unassociated μ links to an output segment: notated as X^{μ})

3.2. Suffixation of C/V nodes

(2) Suffixation of defective C/V segments in class I/II ensure that the stem must end in a C/V

Defective C/V nodes...

- defective segmental root nodes are assumed to result in mutation, reduplication or insertion
(e.g. Bye\&Svenonius to appear, Bermúdez-Otero to appear)
- in SSM, they have a minimal feature specification characterizing them as either obstruents/sonorants/glides or as vowel
(13) [+vocalic]
(Padgett 2007, Nevins\&Chitoran 2007)
$=A b s e n c e ~ o f ~ a ~ n a r r o w ~ c o n s t r i c t i o n ~ a m o n g ~ t h e ~ a r t i c u l a t o r s ~$
(14) Natural classes given [\pm cons] and [$\pm+$ vocalic]
(Nevins\&Chitoran 2007)

obstruents	$[+$ cons $][-\mathrm{voc}][-$ son $]$	
liquids, nasals		$[+$ cons $][-\mathrm{voc}][+$ son $]$
vowels		$[-$ cons $][+\mathrm{voc}][+$ son $]$
glides		$[-$ cons $][-\mathrm{voc}][+$ son $]$
illicit	[+cons $][+$ voc $]$	

Defective C/V nodes...

- specifications for the missing features are required by constraints like HavePlace
(15) Example: Representation for suffix class I /-pe:/

\bullet	\bullet	\bullet
	+ cons	-cons
-voc	- -von	+ +son
	-cont	+ cont
	-nas	-nas
	LAB	DORS

\Rightarrow abbreviated as: $\quad[-\mathrm{voc}]$ pe:

Defective C/V nodes...

- are realized

	as underspecified default segment, or	as fused segment
	\bullet_{x} $\mathrm{h}_{1} \mathrm{O}_{2} \mathrm{j}_{3} \mathrm{a}_{4}+$ $[-\mathrm{voc}]$	$\mathrm{p}_{1} \mathrm{O}_{2} \mathrm{I}_{3} \mathrm{a}_{4} \mathrm{t}_{5}+$$[-\mathrm{voc}]$
\downarrow	\downarrow	
	$\mathrm{h}_{1} \mathrm{O}_{2} \mathrm{j}_{3} \mathrm{a}_{4} \mathrm{P}_{\mathrm{x}}$	$\mathrm{p}_{1} \mathrm{O}_{2} \mathrm{I}_{3} \mathrm{a}_{4} \mathrm{t}_{5, \mathrm{x}}$
violates:	e.g. HAVEPLACE	UNIFORMITY

Defective C/V nodes...

- are part of the following suffix and must be realized at the right edge of the stem
(16) O-Contiguitiy (=O-Cont) (Landmann 2002) Assign a violation mark for every instance where phonological portions in the output that belong to the same morpheme do not form a contiguous string. ('No M-internal insertion.')

Constraints responsible for iambic lengthening

$\operatorname{MAX}^{-S_{A F}}$
Assign a violation mark for affix segment in the output without an input correspondent.

Ident-[vocalic] (=Id-[voc])
(McCarthy\&Prince 1995+1999)
Assign a violation mark if an input segment corresponds to an output segment with a different value for [$\pm \mathrm{voc}$].

HavePlace (=HavPl)
(e.g. Padgett 1995, McCarthy 2008)

Assign a violation mark for every segment that has no place specification.
Uniformity (=Unif)
(McCarthy)
Assign a violation mark for every output segment that corresponds to more than one input segment.

Demand to end in a C: realization of a default segment

(17) Realization of a defective C

$\mu+\mathrm{h}_{1} \mathrm{o}_{2} \mathrm{j}_{3} \mathrm{a}_{4}+{ }^{[-\mathrm{voc}]} \mathrm{p}_{\mathrm{y}} \mathrm{e}_{\mathrm{z}}$	Max-S ${ }_{\text {AF }}$	O-Cont	Id-[voc]	HavPl	UNIF
a. $\mathrm{h}_{1} \mathrm{O}_{2}^{\mu} \cdot \mathrm{j}_{3} \mathrm{á}_{4} \cdot{ }_{4} \cdot \mathrm{P}_{\mathrm{y}} \mathrm{e}_{\mathrm{z}}$	*!		।		
b. $\mathrm{h}_{1} \mathrm{O}_{2}{ }^{\mu} \cdot \mathrm{j}_{3, \mathrm{x}}{ }^{\text {a }}{ }_{4}{ }_{4} \cdot \mathrm{p}_{y} \mathrm{e}_{\mathrm{z}}$		*!	I		*
c. $\mathrm{h}_{1} \mathrm{O}_{2}{ }^{\mu} \cdot \mathrm{j}_{3} \mathrm{a}^{\prime} 4, \mathrm{x} \cdot \mathrm{P}_{\mathrm{y}} \mathrm{e}_{\mathrm{z}}$			*!		*
d. $\mathrm{h}_{1} \mathrm{o}_{2}{ }^{\mu} \cdot \mathrm{j}_{3} \mathrm{a}_{4} \mathrm{P}_{x} \cdot \mathrm{P}_{\mathrm{y}} \mathrm{e}_{z}$			।	*	

3.2. Satisfaction of the templatic requirement

Different phonological strategies apply to ensure satisfaction of the templatic requirement

Summarizing the ranking

(18)

Moraic Overwriting results in LH

μ + hek:a	, Stress-to ।					Dep- μ
	All-Ft-L	RhT:I	Weight	MAX- $\mu_{\text {AF }}$	DL]	
a. hek:a		1		* ${ }^{\text {* }}$	।	
b. he ${ }^{\mu} \mathrm{ka}$		I	*!	,	!	
c. he ${ }^{\mu} \mathrm{ka}$:				I	'	*

Summarizing the ranking

(19)

C/V must be realized in final position

$\mu+\text { hoja }+[-\mathrm{voc}] \text { peH }$	LH	Max-S ${ }_{\text {AF }}$	O-Cont	Id [voc]	HavPl	UniF
a. $\mathrm{ho}^{\text {u }}$ japeH		*!				
b. $\mathrm{ho}^{\mu j_{\mathrm{j}} \mathrm{apeH}}$			*!			*
c. $\mathrm{ho}^{\mu}{ }_{\mathrm{jax}} \mathrm{peH}$				*!		*
d. ho ${ }^{\mu}{ }_{\text {jaP }}{ }_{x}$ peH					*	*

Example I: Insertion of /y/

(20) wyks realized as wykys before class I suffix

$\mu+\text { wyks }+{ }^{[-\mathrm{voc}]} \mathrm{kuH}$		C/V	HavPl	UniF	Max-C	Lin
a.* wýks.kuH	Max!					
b.* wy ${ }^{\prime \prime}$ ks.x ${ }^{\text {kuH }}$	DL]!			*		
c. wýl ${ }^{\text {k }}$.sy $P_{x} \cdot \mathrm{kuH}$	DL]!		**			
d. wy ${ }^{\mu}$.kýs.x kuH			*	*	,	

(Nota that CCC cluster are independently impossible in SSM)

Example II: metathesis

(21) Pamla realized as Pamal before class I suffix

$\mu+\text { Pamla }+{ }^{[-\mathrm{voc}]} \mathrm{kuH}$			HavPl	$\begin{array}{c:c:c} & & \\ \text { UNIF }^{\prime} & \text { MAX-C } & \text { Lin } \end{array}$		
a. Pá $^{\mu} \mathrm{m} . \mathrm{l}_{x} \mathrm{a} . \mathrm{kuH}$	DL]!			*		
b. $\mathrm{Pa}^{\mu} . \mathrm{I}_{\mathrm{x}} \mathrm{a} \cdot \mathrm{kuH}$	StW!	Cont!				
c. ? $^{\mu}{ }^{\mu} . l a P_{x} \cdot \mathrm{kuH}$			*!		*	
d. ${ }^{\text {d }}$? ${ }^{\mu}{ }^{\text {. }}$ mál ${ }_{\text {l }} \cdot \mathrm{kuH}$						* *

Example III: Shortening, insertion of $/ \mathrm{y} /$ and /?/

(22) cy:m realized as cymy? before class I suffix

$\mu+\mathrm{cy}: \mathrm{m}+\stackrel{\bullet_{\mathrm{x}}}{[-\mathrm{voc}]} \mathrm{kuH}$	LH	C/V	HavPl	Unif	Max-C	Lin
a.* cý: ${ }^{\text {m }} \mathrm{m}_{x} \cdot \mathrm{kuH}$	DL]!			*		'
b. $\mathrm{cy}^{\prime \prime} \mathrm{m}_{\mathrm{x}} \cdot \mathrm{kuH}$	DL]!			*		
c. $\mathrm{cy}^{\mu} \cdot \mathrm{m}_{x} \dot{y} \cdot \mathrm{kuH}$	StW]!	Cont!	*	*		I
d. cy ${ }^{\mu} \cdot m y{ }^{\text {P }}$ x $\cdot \mathrm{kuH}$			**		I	,

(* CV :C syllables are independently impossible in SSM)

Example IV: C-Deletion

(23) hela:j realized as hela: before class II suffix

$\underset{\mu+\text { hela:j }+\underset{{ }^{[+ \text {+voc] }}}{\stackrel{\bullet_{x}}{t}} .}{ }$	$\begin{gathered} \prime \\ \text { LH } \\ \text { C/V } \end{gathered}$	HavPl	UNIF	Max-C	Lin
a. he ${ }^{\mu} .{ }^{\text {axax }}$, j t	Cont!		*		
b. he ${ }^{\mu} . l a a_{x}{ }^{\text {t }}$	Id!		*		
\%c. he ${ }^{\mu}$. $1 a_{x} \mathrm{t}$				*	

4. Broaden the view

Affixes triggering lengthening in SSM

Lengthening suffixes in SSM

- recall that DepLink- μ] results in overwriting if a μ is prefixed
- but there are actually affixes that trigger lengthening, i.e. where a μ is apparently added to the stem!
(24) Lengthening suffixes in SSM
a. Penup-:eniste-?

Penupieniste?
'I chased you'
b. kel:a-na-:me?
kel:ana:me?
'It snowed on us'

Lengthening suffixes in SSM

(25) \quad A floating μ in the representation of a lengthening suffix

$\begin{gathered} \mu \\ \ldots \\ \mathrm{n}^{\mu} \mathrm{a}+\mathrm{me}^{\mu} \text { ? } \end{gathered}$	$\begin{array}{l:l}\text { MAX- } \mu_{\text {AF }} & D L]\end{array}$	MAX- μ
a.		*
b.		
C.	$\begin{aligned} & \text { T } \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	*!

Moraic prefixes overwrite and moraic suffixes lengthen

Conclusion

- templatic effects in Southern Sierra Miwok (SSM) are the consequence of the affixation of moras and underspecified segments
- this analysis is based exclusively on the affixation of segment-sized units and avoids the assumptions of syllabified X-Slot positions in the representation of morphemes
- this unifies analysis for templatic effects with the analysis of other lengthening phenomena in the language that are based on the assumption of floating moras as well

