Multiple reduplication as non-segmental affixation: a case study from Lushootseed

Eva Zimmermann Leipzig University

July 8, 2016 Workshop Replicative processes in language

UNIVERSITÄT LEIPZIG

One view at reduplication: the RED-morpheme

(McCarthy and Prince, 1993, 1995)

(1)

RED -	badu	Afx≤σ	NoCoda	Max-BR
a.	badu-badu	*!		
b.	bad-badu		*!	*
™ C.	ba-badu			**

Another view at reduplication: non-segmental affixes

(Saba Kirchner, 2007; Bermúdez-Otero, 2012; Bye and Svenonius, 2012)

(2)

μ μ μ μ + b ₁ a ₂ d ₃ u ₄ p ₅ i ₆	Махµ	Ons!	Integrity
a. $b_1 \begin{array}{cccccccccccccccccccccccccccccccccccc$	*!	 	
b.		*! !	*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		 	**

copying of underlying material as one phonological strategy to fill otherwise empty affixal nodes with material (=Theory of Minimal Reduplication, Saba Kirchner, 2007, 2010)

Main claim

- reduplication is the consequence of non-segmental affixation:
 - multiple reduplication in Lushootseed follows in such a purely phonological account
 vs. alternatives based on constraints specified for reduplicative morphemes
 - the **typology** of multiple redulication follows straightforwardly in a phonological **HG account** to reduplication

Double reduplication in Lushootseed

Lushootseed reduplication

Coast Salishan language

(Dryer and Haspelmath, 2013)

- empirical base is mainly Urbanczyk (2001), based on Bates et al. (1994)
- theoretical accounts in Broselow (1983); Bates (1986); Urbanczyk (1999, 2001); Fitzpatrick and Nevins (2004); Fitzpatrick (2006), and Inkelas (to appear)

DISTRIBUTIVE: /CVC/-reduplication

(3)

júbil	'die, starve'	júbjubil	'they are starving'	U:221
g ^w ədíl	'sit down'	g ^w ədg ^w ədíl	'sitting all about'	U:212
bədá?	'child'	bədbədá?	'children'	U:209
pástəd	'white person'	paspast∋d	'many white folk'	U:215
s-t∫'ást	'branch'	s-tʃ'ástʃ'ast	'branches'	U:211
t∫əg ^w ás	'wife'	tfəg ^w tfəg ^w ás	'seeking a woman to marry'	U:211

- marks plurals, repeated or frequent actions, and distributives
- prefixed /CVC/-reduplicant

DIMINUTIVE I: /CV/-reduplication

(4)

```
γáhəb
             'cry'
                               χάχαhəb
                                               'an infant crying'
                                                                      U:205
s-túbſ
                               s-tútubſ
             'man'
                                               'boy'
                                                                      U:204
júbil
            'die, starve'
                              jújəbil
                                               'small animal dies'
                                                                      U:207
s-túlək<sup>w</sup>
                               s-tútələk<sup>w</sup>
            'river'
                                               'creek'
                                                                      U:204
pástəd
             'white person'
                               pápstəd
                                               'white child'
                                                                      U:199
```

- prefixed /CV/-reduplicant with main stress
- often accompanied by weakening/deletion of the stem vowel

DIMINUTIVE II: Fixed segmentism

(5)

a.	g ^w əd-il	'sit'	g ^w ig ^w əd-il	'sit down briefly'	U1:195
	bədá?	ʻchild'	bíbəda?	'young child'	U1:192
	təláw-il	ʻrun'	títəlaw-il	ʻjog, run a little'	U1:203
	tsəláts	'five'	tsítsəlats	'five small ones'	U1:193
b.	tʃ'tł'á?	'rock'	tʃ'ítʃ'tɬ'a?	'stone'	U1:194
	tʃ'say'	'spear'	tʃ'itʃ'say?	'toy spear'	U1:194
	ts'k ^w 'úsəd	'walking stick'	ts'íts'k ^w 'usəd	'little walking stick'	U1:193
	q ^w łáy?	ʻlog'	q ^w iq ^w łəy?	'stick'	U1:201

phonologically predictable allomorphy: /Ci/ instead of /CV/ for stems starting with /Cə/ or /CC/ (Bates, 1986)

July 8, 2016 Multiple reduplication Eva Zimmermann 9

DISTRIBUTIVE vs. DIMINUTIVES: Cluster

(6) Diminutive Reduplication for cluster-initial verbs

only the initial /C/ is copied: */tʃsi-tʃ'say'/

- (7) Distributive Reduplication for cluster-initial verbs

 qwlay? 'log' qwlqwlay? 'logs' U1:217

 tf'tl'a? 'rock' tf'tl'a? 'rocks scattered about' U1:211
 - both initial /C/'s are copied: *qwqay-qwqay?

Summary of the empirical facts so far

DIMINUTIVE

- prefixed CV-reduplicant
- only the initial C is copied in #CC-contexts (+/i/)

DISTRIBUTIVE

prefixed CVC-reduplicant

initial CC but no V is copied in #CC-contexts

Multiple Reduplication: DIM>DIST

(8)

```
bədá?
                            bíbədbəda?
                 'child'
                                                              'dolls, litter'
                                                                                                     U1:225
s-q<sup>w</sup>əbáy
                            q<sup>w</sup>iq<sup>w</sup>əbq<sup>w</sup>əbáy?-cut
                 'dog'
                                                              'make self (sound) like a dog'
                                                                                                     U1:225
                            líləxləx-∫ad
ləx
                 'light'
                                                              'flashlight'
                                                                                                     U1:225
                                                              (lit: 'little flashing light')
```

Multiple Reduplication: DIST≫DIM

(9)

b∋dá?	ʻchild'	bíbibəda?	'small children'	U:225
pástəd	'white person'	pápapstəd	'many white children'	U:U226
tʃ'tł'a?	'rock'	tſ'ítſ' itʃtł'a?	'gravel'	U:U226
ləg ^w əb	'youth'	lílil'g ^w əb	'little fellows'	U:U226
pí∫pis	'cat'	pípip∫pis	'kittens'	U:226
g ^w ədíl	'sit'	g ^w íg ^w ig ^w ədil	'children sitting'	B8:326

Multiple Reduplication: DIST≫DIM

vs. distributive reduplicants in all other contexts:

- 1. Why is the distributive only /CV/, not /CVC/? */bid-bi-bəda?/ or */bib-bi-bəda?/
- Why is the vowel in the distributive /i/?
 */bə-bi-bəda?/

2. Why is the vowel in the distributive /i/?

→ The distributive 'sees' adjacent (copied) morphemes as its base? (Broselow, 1983)

 \Rightarrow Claim here: /i/ is phonologically expected for coda-less copied σ

1. Why is the distributive only /CV/, not /CVC/?

→ Each reduplicative affix = one cycle; reduplication copies only phonemic material uniquely contained in the cycle adjacent to the affix (Broselow, 1983)

→ Claim here: there is no need to copy a coda, only a following C: and this is indeed present

16 / 51

Summary of the empirical facts

DIMINUTIVE

- prefixed CV-reduplicant
- /Ci/ if base is #CC or #C
- only the initial C is copied in #CC-contexts (+/i/)
 - cooccur in both orders: DIST > DIM and DIM > DIST
 - /CV/ if directly followed by a diminutive and /Ci/ if directly

DISTRIBUTIVE

prefixed CVC-reduplicant

initial CC but no V is copied in #CC-contexts

followed by a diminutive /Ci/

Harmonic Grammar

- constraints are weighted, not ranked (Smolensky and Legendre, 2006; Legendre et al., 1990)
- predicts gang-effects (e.g. violating less important Cons2+Cons3 is worse than only violating more important Cons1)

(10)

		Cons1	Cons2	Cons3	
	W=	5	4	3	H=
a.	Cand1	-1			-5
b.	Cand2		-1		-4
© C.	Cand3			-1	-3
d.	Cand4		-1	-1	-7

(weights in all following tableaux are tested with OTHelp (Staubs et al., 2010))

Basic mechanism: Fission to fill non-segmental affixes

(11) INTS

Assign a violation for every segment in the input that corresponds to more than one output segment.

LinS

Assign a violation for every pair of output segments O_1 and O_2 that correspond to input segments I_1 and I_2 iff O_2 precedes O_1 but I_2 follows I_1 .

HAVES

Assign * for every μ dominating no segment.

(12)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HavS 5	LinS 1	INTS 1	H=
a.	-1			-5
ш b.		1	2	-3

Basic mechanism: Underspecified root nodes and feature fission

(13) a. Affixation of a radically underspecified segment (McCarthy, 1988)

b. Featural fission to provide missing features

(14) *Abbreviated:*

Representations for the copying-triggering morphemes

(15)
$$Dim \longleftrightarrow \overline{\mathbb{O}}$$

(16) DIST
$$\longleftrightarrow$$
 \bigcirc \bigcirc

Basic constraints

- (17) a. Max[cns]
 - Assign a violation for every $[\pm \text{cons}]$ feature in the input without an output correspondent.
 - b. Hav[so]Assign a violation for every segment without a specification for $[\pm son]$.
 - DEP[so]
 Assign a violation for every [±son] feature in the output without an input correspondent.
 - d. INT[so]
 Assign a violation for every [±son] feature in the input that corresponds to more than one output correspondent.
 - e. LIN[so]
 Assign a violation for every pair of output features [±son] O₁ and O₂ that correspond to input features [±son] I₁ and I₂ iff O₂ precedes O₁ but I₂ follows I₁.

((17-b-e): placeholders for numerous constraints on all feature dimensions but [±cons])

Simple **DIMINUTIVE** reduplication

(18)

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ons!	F 1	[cns]	DEP [so]	INT [so]	H=
		20	20	20	10	1	
a.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		 	-1			-20
b.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-1	-1	 			-40
c.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1			-1		-30
d.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1	 	 		-1	-21
☞ e.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					-2	-2

Simple DISTRIBUTIVE reduplication I

(19)

	Ons! 20	HAV [so] 20	MAX [cns] 20	DEP [so] 10	INT [so]	H=
a. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		 	-2			-40
b.		-2	 			-40
c. $\begin{array}{cccccccccccccccccccccccccccccccccccc$		 	 	-3		-30
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		 			-3	-3

July 8, 2016

Morph-contiguous copying

- morpheme contiguity constraint (20) (Landman, 2002)
- contra Struijke (2000): *not* existential but demands Contiguity for every single output instance
 - → prefers full morpheme copying
- (20) MCnt

Given two output elements O_1 and O_2 corresponding to input elements I_1 and I_2 that belong to the same morpheme and I_1 directly precedes I_2 : Assign * for every O_1 that is not directly followed by O_2 and for every O_2 that is not directly preceded by O_1 .

Simple **DISTRIBUTIVE** reduplication II

- /V/ between two copied /C/'s copied as well to avoid MCnt-violations
- whole morpheme copying avoids all MCnt-violations but induces too many Lin[so] and Int[so]-violations

(21)

	МС п т 13	Dep [so] 10	LIN [so] 4	INT [so] 1	H=
	-1		-3	-3	-28
e. $\begin{array}{cccccccccccccccccccccccccccccccccccc$	-3		-2	-2	-49
f. $b_1 \xrightarrow{\partial_2} d_3 \xrightarrow{a_4} \xrightarrow{?_5} b_1 \xrightarrow{\partial_2} d_3 \xrightarrow{a_4} \xrightarrow{?_5}$			-10	-5	-45

July 8, 2016

Asymmetry 1: /CV/ vs. /Ci/ in the DIMINUTIVE

- the /i/ is analysed as default segmentism to avoid:
 - a marked syllable containing only a /ə/ and no coda (22)
 - a non-local copy across a consonant cluster (s.below)

(Urbanczyk, 2001)

(22)*PLsu

> Assign a violation mark for every μ that only dominates placeless segments.

(similar to *PI-lessσ (Kurisu, 2001; Urbanczyk, 1998))

implies: all rhyme elements are dominated by a μ (=shared μ's, (Hayes, 1989; Sprouse, 1996; Bermúdez-Otero, 2001)) and glottal segments are place-less

Asymmetry 1: Default segmentism in the **DIMINUTIVE** for #Cə

(23)

	b ₁ ∂ ₂ d ₃ a ₄ ? ₅ © Ø © © ©	MCnt 13	*PLsµ 10	DEP [so] 10	INT [so]	H=
a.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1	-2	 	-2	-35
ı≅ b.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1	-1	-1	-1	-34

(no repair for underlying place-less rhymes: higher-ranked faithfulness constraints against insertion of place for underlying segments)

July 8, 2016

Asymmetry 1: No default segmentism in the DISTRIBUTIVE

(24)

	MCnt 13	*PLsµ 10	DEP [so] 10	INT [so]	H=
	-1	-1	 	-3	-26
b. b ₁ i d ₃ b ₁ b ₂ d ₃ a ₄ ? ₅ © © © © © © © ©	-3	-1	-1	-2	-61

- realization of /i/ results in a discontiguous copy violating MCNT
- in fact: there is no need to avoid a copied /ə/ since *PLsµ is never violated if a non-glottal coda is copied as well

July 8, 2016 Multiple reduplication Eva Zimmermann

Asymmetry 2: Default segmentism in the DIM for #CC

(25)

	МС п т 13	Dep [so] 10	Lin [so] 4	INT [so]	H=
a. q ₁ \(\frac{1}{2}\) a ₃ q ₁ \(\frac{1}{2}\) a ₃ y ₄ © © © © © © ©	-1		-3	-3	-28
b. q ₁ a ₃ q ₁ q ₂ a ₃ y ₄ © 0 © 0 ©	-3		-2	-2	-49
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-1	-1		-1	-24

/i/ insertion since vowel copying results in a discontiguous copy:
 → a gang effect: LIN[so] and INT[so] together against DEP[so]

July 8, 2016 Multiple reduplication Eva Zimmermann

Asymmetry 2: Cluster copying in DIST

(26)

	MCnt 13	Dep [so] 10	Lin [so] 4	INT [so]	H=
a. tj'1 s2 tj'1 s2 a3 y'4	-1		-1	-2	-19
b. $ \begin{array}{c cccc} tf'_1 & s_2 & i & tf'_1 & s_2 & a_3 & y'_4 \\ \hline \bullet & \hline \bullet &$	-1	-1	-1	-2	-29
c. tf' ₁ s ₂ a ₃ tf' ₁ s ₂ a ₃ y' ₄ © © © © © © ©	-1		-3	-3	-28
d. $ \begin{array}{c cccc} f'_1 & i & s_2 & f'_1 & s_2 & a_3 & y'_4 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \end{array} $	-3	-1	-1	-2	-55

no V position needs to be filled to begin with: two C's can be copied without creating a discontiguous copy

July 8, 2016 Multiple reduplication Eva Zimmermann

Analysis: Interim summary

DIMINUTIVE

fission of a V to fill Θ and of a C to create an onset

(cf. Bates and Carlson (1998) on Spokane)

- i /i/-epenthesis to avoid an open /ə/- σ
- /i/-epenthesis to avoid a discontiguous copy for #CC-bases

DIMINUTIVE

- fission of C's to fill O's and of intervening V to avoid a discontiguous copy
- no /i/-epenthesis: no *PLsμ-violation if coda-copying
- no /i/-epenthesis: two initial C's copied without creating a discontiguous copy

Multiple reduplication: DIM≫DIST

(27)

	MCnt 13	*PLsµ 10	Dep [so] 10	Lin [so] 4	Int [so] 1	H=
a. $b_1 \xrightarrow{\partial_2} b_1 \xrightarrow{d_3} b_1 \xrightarrow{\partial_2} d_3 \xrightarrow{a_4} \xrightarrow{?_5}$	-4	-1		-4	-3	-81
b. $b_1 \xrightarrow{\partial_2} b_1 \xrightarrow{b_1} b_1 \xrightarrow{\partial_2} d_3 \xrightarrow{a_4} ?_5$	-3	-1	 	-3	-2	-63
c. b ₁ b ₂ b ₁ b ₂ d ₃ b ₁ b ₂ d ₃ a ₄ ? ₅	-2	-2		-5	-3	-69
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	-2	-1	-1	-3	-3	-61
e. b_1 i b_1 i d_3 b_1 ∂_2 d_3 a_4 $?_5$ \bigcirc	-4	-1	-2	-2	-2	-92

Multiple reduplication: DIST≫DIM

(28)

	МС п т 13	*PLsµ		Lin [so] 4	INT [so]	H=
a. $b_1 d_3 hinspace b_1 hinspace b_2 d_3 a_4 hinspace a_5$	-5	-2		-4	-3	-104
b. $b_1 black black $	-3	-3		-5	-3	-92
c. b_1 i d_3 i b_1 b_2 d_3 a_4 $?_5$ \bigcirc	-3	-1	-2	-2	-2	-79
	-2	-1	-2		-1	-57

July 8, 2016

DIST≫DIM: Analysis

Why is the distributive only /CV/, not /CVC/? (*/bib-bi-bəda?/)

- 1. the second \odot of the distributive morpheme already provides an onset for the \odot diminutive morpheme
- → not absence of expected coda-copying but absence of phonologically predictable onset copying

Why is the vowel in the distributive /i/? (*/bə-bi-bəda?/)

- 2. since the distributive is coda-less, epenthetic-/i/ avoids a μ only dominating place-less segments
- → not copying of the adjacent /i/ in the diminutive but phonologically predictable epenthesis

An alternative account to Lushootseed: RED

Urbanczyk (1999, 2001)

- different RED-morphemes, each with its own correspondence relation (Max-Dist >> NoCoda >> Max-Dim)
- a matter of some delicacy to determine what portion of the output functions as the base for each morpheme' (Urbanczyk, 1999, 518)
 - → the base is the string that is adjacent in the output

July 8, 2016 Multiple reduplication Eva Zimmermann

36 / 51

A typology of multiple reduplication

No multiple reduplication in Nuuchahnulth

two reduplication-triggering affixes in (29) = a single reduplicant (=a superset of all the effects demanded by the affixes, cf. D.Pulleyblank (yesterday) on the complex pattern!)

```
(29) a. tł'uk-an'uł-apa (Stonham, 2007, 120+121)
broad-at.leg[R+L]-really[RL+L]

'his legs are really big'
tł'uːtł'uːk<sup>w</sup>an'łap
```

- b. m'ał-'as-apa cold-at.the.wrist[RL]-really[RL+L] 'he has really cold wrists' m'a:m'a:ł?asap
- multiple reduplication is avoided if both reduplication-triggering morphemes belong to the same level in various Southern Wakashan varieties (Stonham, 1994, 2004, 2007; Kim, 2003*b*,*a*)

(No) multiple reduplication in Ethio-Semitic (Rose, 1997)

Multiple reduplication:

- reduplication to fill consonantal templates
- frequentative is a reduplicative infix (cf. H.Sande yesterday!)

Tigrinya

=multiple reduplication to allow filling a template and expressing every morpheme

Chaha

=only multiple reduplication if it helps satisfying the template

Amharic

=no multiple reduplication

No multiple reduplication in Manam (Buckley, 1997)

- foot-based reduplication in Manam: salaga-laga
- if final two syllables of base are identical, reduplication is partial: ragogo-go, *ragogo-gogo
- analysis in Buckley (1997): RED is part of the lexical entry of those words and multiple reduplication is avoided

Absence of multiple reduplication under a RED-based account I

- *REDRED, *DUPDUP
 - 'multiple copies are disallowed' (Stonham, 2004, 172); 'against multiple copies' (Stonham, 2007, 127)
 - → Identification of multiple copies requires reference to the morphological (input) structure

Absence of multiple reduplication under a RED-based account II

Unified indexation and BR-INTEGRITY

in the presence of multiple RED-morphemes, only one instance of BR-indexes is present: BR-INTEGRITY penalizes segments with multiple BR-correspondents (Buckley, 1997; Rose, 1997)

- → How are different reduplicative morphemes distinguished? To, for example, determine their different shape?
- → To account for languages with/without multiple reduplication requires an additional Morphexpression but isn't realization of a RED-morpheme already ensured by FAITH-BR?

The proposed system and multiple reduplication

A base and two reduplication-triggering affixes:

(30)

μ	μ μ μ + + b ₁ a ₂ d ₃ u ₄	МСпт	LinS	IntS	Махµ
a.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1	-1	-2	-1
b.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-2	-2	-2	

The proposed system and multiple reduplication

Possible grammars:

(31)

L1. No multiple reduplication							
μ μ μ	Махμ	LinS	IntS	MCnt			
b_1 a_2 b_1 a_2 d_3 u_4	8	4	1	1			
L2. Multiple Reduplication							
μ μ μ	Махμ	IntS	МСпт	LinS			
$b_1 \ a_2 \ b_1 \ a_2 \ b_1 \ a_2 \ d_3 \ u_4$	5	1	1	1			

Conclusion

Summary

- a phonological account based on non-linear affixation and fission to fill empty positions predicts the complex pattern of multiple reduplication in Lushootseed
- → no abstract RED-morpheme, morpheme-specific shape-requierements or different cycles are necessary
- HG grammar correctly predicts 'typology' of (non)multiple reduplication as 'threshold' effects: simple reduplication still surfaces but multiple reduplication is avoided (=too many INTEC-violations)

References

- Bates, Dawn (1986), 'An analysis of Lushootseed diminutive reduplication', *Proceedings of BLS 12* pp. 1–13.
- Bates, Dawn and Barry F. Carlson (1998), Spokane syllable structure, in E.Czaykowska-Higgins and M. D.Kinkade, eds, 'Salish languages and linguistics: theoretical and descriptive perspectives', Mouton de Gruyter, pp. 99–123.
- Bates, Dawn, Thom Hess and Vi Hilbert (1994), Lushootseed dictionary, University of Washington Press.
- Bermúdez-Otero, Ricardo (2001), 'Underlyingly nonmoraic coda consonants, faithfulness, and sympathy', Ms. University of Manchester, online available at http://www.bermudez-otero.com/DEP-mora.pdf.
- Bermudez-Otero, Ricardo (2012), The architecture of grammar and the division of labour in exponence, *in* J.Trommer, ed., 'The morphology and phonology of exponence: The state of the art', Oxford University Press, Oxford, pp. 8–83.
- Broselow, Ellen (1983), 'Salish double reduplications: Subjacency in morphology', *Natural Language and Linguistic Theory* 1, 317–346.
- Buckley, Eugene (1997), 'Integrity and correspondence in Manam reduplication', *Proceedings of NELS 28* pp. 59-67.
- Bye, Patrick and Peter Svenonius (2012), Non-concatenative morphology as epiphenomenon, in J.Trommer, ed., 'The morphology and phonology of exponence: The state of the art', Oxford University Press, Oxford, pp. 426-495.
- Dryer, Matthew and Martin Haspelmath (2013), 'The world atlas of language structures', Interactive Reference Tool, downloadable at http://wals.info.
- Fitzpatrick, Justin (2006), 'Sources of multiple reduplication in Salish and beyond', MIT Working Papers on Endangered and Less Familiar Languages 7, 211–240.

- Fitzpatrick, Justin and Andrew Nevins (2004), 'Linearizing nested and overlapping precedence in multiple reduplication', *University of Pennsylvania Working Papers in Linguistics* **10**.
- Hayes, Bruce (1989), 'Compensatory Lengthening in moraic phonology', *Linguistic Inquiry* **20**, 253–306.
- Inkelas, Sharon (to appear), Over- and underexponence in morphology, in G.Buckley, T.Crane and J.Good, eds, 'Revealing structure: Finding patterns in grammars and using grammatical patterns to elucidate language, A festschrift to honor Larry M. Hyman', CLSI Publications.
- Kim, Eun Sook (2003*a*), 'Patterns of reduplication in Nuu-chah-nulth', *Proceedings of NELS 33* pp. 127–146.
- Kim, Eun-Sook (2003b), Theoretical issues in Nuu-chah-nulth phonology and morphology (British Columbia), UMI, Ann Arbor, MI.

Kurisu, Kazutaka (2001), The Phonology of Morpheme Realization, PhD thesis, UC Santa Cruz.

- Landman, Meredith (2002), Morphological contiguity, *in* A.Carpenter, A.Coetzee and P.de Lacy, eds, 'Papers in Optimality Theory II: University of Massachusetts-Amherst Occasional Papers in Linguistics', GLSA, Amherst, MA.
- Legendre, Geraldine, Yoshiro Miyata and Paul Smolensky (1990), 'Harmonic grammar a formal multi-level connectionist theory of linguistic well-formedness: Theoretical foundations', *Proceedings of the 12th annual conference of the cognitive science society* pp. 388–395.
- McCarthy, John (1988), 'Feature geometry and dependency: A review', *Phonetica* **43**, 84–108. McCarthy, John and Alan Prince (1993), 'Generalized alignment', *Yearbook of Morphology* pp. 79–153.
- McCarthy, John and Alan Prince (1995), Faithfulness and reduplicative identity, in J.Beckman, L.Dickey and S.Urbanczyk, eds, 'UMOP', GLSA, Amherst, MA, pp. 249–384.

- Rose, Sharon (1997), 'Multiple correspondence in reduplication', *BLS 23 23*. Saba Kirchner, Jesse (2007), 'The phonology of lexical underspecification', ms. University of
- California, online available at http://jessesabakirchner.com/docs/2007-phonology-of-lexical-underspecification.pdf.
- Saba Kirchner, Jesse (2010), Minimal Reduplication, PhD thesis, University of California at Santa Cruz. ROA 1078-0610.
- Smolensky, Paul and Geraldine Legendre (2006), *The harmonic mind: From neural computation to Optimality-Theoretic grammar*, Cambridge MA: MIT Press.
- Sprouse, Ronald (1996), 'Vowels that borrow moras: Geminates and weight in OT', *Proceedings of NELS 26* pp. 393–408.
- Staubs, Robert, Michael Becker, Christopher Potts, Patrick Pratt, John McCarthy and Joe Pater (2010), 'OT-Help 2.0. software package.', Amherst, MA: University of Massachusetts Amherst
- Stonham, John (1994), Combinatorial morphology, John Benjamin, Amsterdam.
- Stonham, John (2004), Linguistic Theory and Complex Words, palgrave macmillan.
- Stonham, John (2007), 'Nuuchahnulth double reduplication and stratal optimality theory', *Canadian Journal of Linguistics* **52**, 105–130.
- Struijke, Caro (2000), Existential Faithfulness. A Study of Reduplicative TETU, Feature Movement, and Dissimilation, PhD thesis, University of Maryland at College Park.
- Urbanczyk, Susanne (1998), A-templatic reduplication in Halq'eméylem, in K.Šhahin, S.Blake and E.Kim, eds, 'WCCFL 17', CSLI Publications, Stanford, CA, pp. 655–669.
- Urbanczyk, Suzanne (1999), Double reduplications in parallel, *in* R. Kager, H.van der Hulst and W.Zonneveld, eds, 'The Prosody Morphology Interface', Cambridge University Press, pp. 390–428.
- Urbanczyk, Suzanne (2001), Patterns of reduplication in Lushootseed, Garland, New York.