Special Treatment for Stems and Closed Syllables: Tone in Arapaho

Eva Zimmermann and Jochen Trommer (University of Leipzig)

WSCLA 16

February 11-13th, 2011

Cowell & Moss (2008) on Arapaho

'has resisted attempts at explanation up to the present'

Three interacting mechanisms seem necessary to *describe* the patterns:

- some morphemes require tone pattern on adjacent syllables
- word-level redistribution rules
- grammatical tone shifting rules

My Aims

- present a formal analysis for the tone patterns
 using standard assumptions about autosegmental analysis of tone
 inside an optimality theoretic framework
 (Yip 2002, Prince & Smolensky 1993)
 - morphemes can have (floating) tones in their representation
 - Obligatory Contour Principle

Not my aims today

- add any new data or theoretical machinery
- present a complete picture of the Arapaho tone pattern

Arapaho

- a Plains Algonquian language spoken almost entirely by elders in Wyoming, and to a much lesser extent in Oklahoma (Salzmann 1963, Cowell & Moss 2008)
- remarkable inside the Algonquian family for being a tone language (Mithun 1999, Yip 2002)
- others: Blackfoot and Cheyenne

Contrastive tone

- (1) tecénoo 'door' vs. técenoo 'roll it out'
 - high or normal pitch on short vowels, falling pitch is possible on long vowels and diphtongs

Pattern I: Shift in verbs with plural person suffixes

'The majority of verbs show shift of pitch accent one syllable to the right when plural person suffixes are used' (CM,30)

(2)	Sg	Pl	
	tenéi?éíhi-noo	tenéi?eihí-no?	'we are strong'
	nii?óuubéíhi-noo	nii?óuubeihí-θi	'they feel well'
	betéee-noo	beteéé-θi?	'they are dancing'

Questions

- What is the origin of the second tone in some forms?
 - Sg Pl heniisétee-? heníísetéí-?-i 'they are ripe'
- What about stems without a tone on the penultimate syllable?
 - Sg Pl bíískooti bíískootí-?i 'they are blooming' (4)
- Why is the shift absent in some forms?
 - Sg Pl tenéi?éíhi-níθ tenéi?éíhi-níθ-i 'they (obv) are strong' (5)

Pattern II: Stem Asymmetries

Some stems show departure from their underlying tone pattern in the very same morpho-syntactic context.

(6)

	2s	2p
100	cííh?oh-úθe-n	cííh?oh-uθé-nee
1sg	nonóóhob-éθe-n	nonóóhob-eθé-nee
100	cííh?óh-ee-n	cííh?óh-ee-nee
1pe	nonoohób-ee-n	nonoohób-ee-nee

+high tone? Tone Shift?

Question

Is this simply idiosyncratic behaviour of these stems or is there an independent explanation for these asymmetries?

Theoretical Background: Tones as Autosegments in OT

- Tones as autosegments on a tier of their own (Goldsmith 1976)
- associate to tone-bearing units (TBUs) on another tier and can associate to more than one
- the mora is assumed to be the TBU in Arapaho: only long vowels and diphtongs can have a 'contour tone'

Main Assumptions

- Morphological Colours
- Containment
 - Containment for Elements (segments, features,...)
 - Containment for Association Lines

I. Morphological Colours (van Oostendorp 2006)

- every morpheme ≈ one specific 'colour' that is present on all phonological elements that are affiliated with this morpheme
- epenthetic elements \approx colourless
- this e.g. allows an easy implementation of a constraint deriving Derived Environment Effects
 (Lubowicz 2002, Anttila 2005, van Oostendorp 2008)
- (8) ALTERNATION (=ALT) (van Oostendorp 2006) If an association line links two elements of colour α , the line should also have colour α .

Ila. Containment (Prince & Smolensky 1993)

- (9) Containment Every element of the phonological input representation is contained in the output.
 - all input elements must still be present in the output but can be marked as phonetically invisible
 - elements that are invisible for the phonetics = elements that are not properly integrated into the prosodic structure, i.e. not dominated by the highest prosodic word node

IIb. Containment for Association Lines

(Goldrick 2001, Revithiadou 2007)

 all association relations that were present underlyingly must be kept in the structure although they can be marked as phonetically invisible

(10) Marking conventions for different types of association lines

Morphological as	ssociation relations	Epenthetic association relations	
phonetically visible: phonetically invisible:		phonetically visible:	
X	Χ	X	
		:	
l	l	i	
Y	Y	Υ	

Realization of elements in containment \approx Max-constraints

■ realization of elements is in containment a consequence of proper integration ensured by e.g. (11) and (12)

(11)
$$\begin{array}{c} H \\ \downarrow \\ u \end{array}$$
 Assign a violation mark for every H that is not phonetically associated to a TBU.

- (12) $\begin{matrix} H \\ \\ \\ \\ \mu \end{matrix}$ Assign a violation mark for every H that is not (phonetically) associated to a TBU.
 - the latter one is a less restrictive version demanding only *any* association (a phonetically invisible one as well)

Relevant markedness constraints

OBLIGATORY CONTOUR PRINCIPLE (=OCP) (13)(Odden 1986) Assign a violation mark to every distinct pair of adjacent TBUs which are associated to different Hs.

(14)*Rise (Yip 2002) Assign a violation mark for every rising tone (\sim sequence of a TBU without a tone and a TBU with H in one syllable).

(15) $(\mu)H_{\mu}$ Assign a violation mark whenever a H is associated to two TBUs through different kinds of association lines, one phonetically visible and another one phonetically invisible.

Analysis

- of the plural 'shift'
- and the stem asymmetry

The mysterious 'Plural Shift' in verbs

- What is the origin of the second tone in some forms?
- What about stems without a tone on the penultimate syllable?
- Why is the shift absent in some forms?
 - ➡ because some agreement marker lack the floating H
 - > it will only provide the stem with a H if it is adjacent to it

Some agreement marker have a floating H in their representation that associates to the preceding final stem syllable

Example: /tenéi?éíhi+no?/ → tenéi?eihíno?

OT-Analysis: the three main ingredients

- the floating tone must associate due to
- the tone cannot associate with a TBU that has the same morphemic affiliation due to ALTERNATE (Derived Environment Effect)
- no two adjacent TBUs with different Hs are possible and the second stem tone must therefore be marked as invisible

OT-Analysis: /tenéi?éíhi+no?/ → tenéi?eihíno?

,	H_s H_1 H_s H_1 H_s H_1 H_s	ОСР	$(\mu)^{H\mu}$	Η	Ацт	\downarrow μ
a.	$\bigwedge_{(\mu_{s} \mu_{s})(\mu_{s})}^{H_{s}} H_{1}$			*!		*
b.	$ \bigwedge_{(\mu_s \mu_s)(\mu_s)}^{H_s} \stackrel{H_1}{\cancel{\longleftarrow}} $	*!				
d.	$ \begin{array}{ccc} H_s & H_1 \\ $		*!			
c.	$\bigwedge_{(\mu_s \mu_s)(\mu_s)}^{H_s} \bigvee_{(\mu_1)}^{H_1}$				*!	
™ e.	$ \begin{array}{ccc} H_s & H_1 \\ & \swarrow & \swarrow \\ & (\mu_s \mu_s)(\mu_s) & (\mu_1) \end{array} $					*

(17)

And the 'dissociated' stem-tone?

- cannot associate in a phonetically visible way due to the OCP
 - (18) *tenéí?eihíno?
- but if enough 'space' is left, it can indeed associate to a preceding stems syllable to receive a phonetically visible association
 - (19) heniisétee+?+i/ → heníísetéé?i
- and this finally explains the appearance of an 'additional' tone in some plural forms

OT-Analysis: /heniisétee+?+i/ → heníísetéé?i

	$(\mu_{s})(\mu_{s})$	H_s H_1 H_s	*Rise	ОСР	Η , , μ	ALT	$egin{pmatrix} H \\ oldsymbol{\downarrow} \\ \mu \end{smallmatrix}$
	a.	$\begin{array}{ccc} H_s & H_1 \\ \downarrow & \swarrow \\ (\mu_s)(\mu_s \mu_s)(\mu_s)(\mu_s \mu_s) & (\mu_1) \end{array}$	*!				
)	b.	H_s H_1 H_s H_1 H_s H_1 H_s		*!			
	c.	H_s H_1 \dagger					*
	r⊛d.	H_s H_1 $(\mu_s)(\mu_s \mu_s)(\mu_s)(\mu_s \mu_s)$ (μ_1)					

(20)

Stem Asymmetries

(21)

	2s	2p
100	cííh?óh-ee-n	cííh?óh-ee-nee
1pe	nonoohób-ee-n	nonoohób-ee-nee

+H? Shift of H?

A floating tone marks 1pe-2 contexts. (~ tonal morpheme)

Stem Asymmetries

 $(22) \qquad \qquad \text{underlying} \qquad \qquad \text{surface} \\ \begin{matrix} H_s & H_1 & H_s & H_1 \\ \bigwedge & & & & \\ C_s \ i_s \ i_s \ h_s \ ?_s \ o_s \ h_s & +_s & & \\ \hline \begin{matrix} H_s & H_1 & & H_s & H_1 \\ \bigwedge & & & & \\ \hline \begin{matrix} H_s & H_1 & & H_s & H_1 \\ \bigwedge & & & & \\ \hline \begin{matrix} A_s & & & \\ & & & & \\ \end{matrix} \end{matrix}$

Stem Asymmetries: Assumptions

- the TBU is the mora
- codas are moraic: an intervening coda consonant between two TBUs therefore ensures that no OCP-violation arises

Stem Asymmetries: OT-Analysis

		ОСР	Η ξ μ	Η ↓ μ
r≊ a.	$ \begin{array}{cccc} H_s & H_1 \\ & & \\ C_s & i_s & i_s & h_s & ?_s & o_s & h_s \end{array} $			
b.	H _s H ₁ C _s i _s i _s h _s ? _s o _s h _s		*!	*
a.	$ \begin{array}{c} H_s & H_1 \\ & \\ \Lambda_s & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	*!		
r≊ b.	$ \begin{array}{ccc} H_s & H_1 \\ & & \\ $		*	*

Note: it is impossible for a 'dissociated' stem tone to associate with the first syllable.

(23)

Summary of patterns

A.	$\mu_1 + \mu_2$	μ_1 μ_2	Association of floating H
В.	$ \begin{array}{ccc} H_1 & H_2 \\ I \\ \mu_1 + & \mu_2 \end{array} $	H_1 H_2 μ_1 μ_2	floating H overwrites without a surface effect
C.	$H_1 H_2 H_3$ $I I$ $\mu_1 + \mu_2 \; \mu_2 + \; \mu_3$	$H_1 H_2 H_3$ $I = - - \mu_1 + \mu_2 \mu_2 + \mu_3$	a floating H and the OCP

This derives...

Al stem betéee (AO)

1s	
1pi	
1pe	
2s	
2p	
3s	
3р	
4s	
4p	

stem nóóhow (AO)

TI stem noohóót (AO)

1s	
1pi	
1pe	
2s	
2p	
3s	
3р	
4s	
4p	

* - stem-specific exceptions in the tonal patterns of suffixes

Conclusion

- the main patterns can be explained from assuming:
 - floating tones that constitute morphemes on their own
 - floating tones that are part of a morphemes and cannot associate with a TBU that belongs to the same morpheme
 - the OCP
 - that intervening coda consonants between Hs are able to prevent OCP-violations
- there are still (stem-specific) lexical exceptions for the distribution of tone

Selected References

- Anttila, Arto (2005), 'Derived environment effects in Colloquial Helsinki Finnish', *The Nature of the Word: Essays in Honor of Paul Kiparsky*.
- Cowell, Andrew and Alonzo Moss (2008), The Arapaho language, University of Colorado Press.
- Goldrick, Matthew (2001), Turbid output representations and the unity of opacity, *in* 'Proceedings of NELS 30', Amherst, MA: GLSA, pp. 231-245.
- Goldsmith, John A. (1976), *Autosegmental Phonology*, PhD thesis, Massachusetts Institute of Technology. Lubowicz, Anna (2002), 'Derived Environment Effects in Optimality Theory', *Lingua* 112, 243-280.
- Mithun, Marianne (1999), *The Languages of Native North America*, Cambridge: Cambridge University Press.
- Odden, David (1986), 'On the Obligatory Contour Principle', Language 62, 353-383.
- Prince, Alan and Paul Smolensky (1993), *Optimality theory: Constraint interaction in generative grammar*, Technical reports of the Rutgers University Center of Cognitive Science.
- Revithiadou, Anthi (2007), Colored turbid accents and containment: A case study from lexical stress, *in* S.Blaho, P.Bye and M.Krämer, eds, 'Freedom of Analysis?', Berlin & New York: Mouton De Gruyter, pp. 149-174.
- Salzmann, Zdeněk (1963), A Sketch of Arapaho Grammar, PhD thesis, Indiana University.
- van Oostendorp, Marc (2006), *A theory of morphosyntactic colours*. Ms., Meertens Institute, Amsterdam. Available under: http://egg.auf.net/06/docs/Hdt%20Oostendorp%20coulours.pdf.
- van Oostendorp, Marc (2008), Derived environment effects and consistency of exponence, *in* S.Blaho, P.Bye and M.Krämer, eds, 'Freedom of Analysis?', Berlin: Mouton de Gruyter, pp. 123-148.
- Yip, Moira (2002), Tone, Cambridge University Press.