Non-Concatenative Allomorphy and Realize Morpheme

Eva Zimmermann (University of Leipzig)
Eva_Zimmermann_@web.de

mfm 17, Manchester

(1) NCA in Saanich

	Non-Cont	Cont	
a.	Metathesis		
	q'p'át	q'ép't	"patch"
	sxát	séxt	"push"
	t'sét	tést	"break"
b.	Reduplication		
	qə́n	qə́qən	"steal"
	q ^w ə́l	le ^w pè ^w p	"say"
	k ^w úl	k ^w úk ^w əl	"school"
C.	/?/-infixation		
	?íŧən	?í?ŧən	"eat"
	?ámət	?á?mət	"sleep"
	wéqəs	wéʔqəs	"yawn"

(2) NCA in Upriver Halkomelem

	Non-Cont	Cont	
a.	Reduplication		
	wíqəs	wíwəqəs	"yawn"
	t'íləm	t'ítələm	"sing"
b.	hə-epenthesis		
	máqət	hámqət	"swallow"
	wáq' ^w	háwq' ^w	"drown"
c.	Vowel lengther	ning	
	?'iməx	?'i:məx	"walk"
	há q ^w ət	há:q ^w ət	"smell"
d.	Stress shift		
	ca:lə́x ^w əm	cá:ləx ^w əm	"bleed"
	∳əlqí	Çlqi	"soak"

Main Claim

ightharpoonup different non-concatenative allomorphs = one (abstract) phonological representation for the morpheme

Main Claim

- → different non-concatenative allomorphs = one (abstract) phonological representation for the morpheme
- → an alternative OT approach based on REALIZE MORPHEME (Kurisu, 2001) is:
 - neither necessary (reanalysis in terms of abstract prosodic entities: section 1)
 - onor adequate (empirical mispredictions: section 2)

(3) Context for allomorphs: Saanich

Non-Cont	Cont				
Metat	hesis				
CCVC	CVCC				
q'p'ét	q'áp't				
Redupli	ication				
CVC(C)	CVCVC(C)				
qə́n	qə́qən				
/?/-infixation					
elsewhere					
?íŧən	?í?∮ən				

Mora affixation

→ different strategies to realize a morphemic mora, i.e. prosodic weight adjustment (e.g. Stonham (1994, 2007), Buckley (2002))

(4) Mora affixation in Saanich

Non-Continuative Continuative Reduplication Э n ə /?/-infix W Metathesis

• ranking of faithfulness constraints demands preference order for allomorphs since every non-concatenative morpheme violates some faithfulness constraint

- ranking of faithfulness constraints demands preference order for allomorphs since every non-concatenative morpheme violates some faithfulness constraint
- and markedness constraints penalize certain strategies in certain contexts, i.e. for certain bases: a less preferred allomorph surfaces

- ranking of faithfulness constraints demands preference order for allomorphs since every non-concatenative morpheme violates some faithfulness constraint
- and markedness constraints penalize certain strategies in certain contexts, i.e. for certain bases: a less preferred allomorph surfaces

(5)

- e.g. Saanich
- (6) Preference for allomorphs:

?-insertion ≫ reduplication ≫ metathesis

⇒ Ranking of faithfulness constraints:

Lin ≫ Integ ≫ Contig

(7) Contexts for allomorphs in Upriver

Non-Cont	Cont				
Stress shifting					
Stress on r	non-initial σ				
λəwə́ls	λáwəls				
Redup	lication				
#CV.	CV.CV.				
wíqəs	wíwəqəs				
hə-prefixing					
#C _[+son] ə mə́qət	$h eg C_{[+son]}$				
mə́qət	hámqət				
Vowel lengthening					
$\#C_{Laryngeal}V$	#C _{Laryngeal} V: ?'i:məx				
?'iməx	?'i:məx				

Affixation of a morphological foot

→ a morphemic foot overwrites underlying prosodic structure: different strategies to form a "good" trochaic foot

Affixation of a morphological foot

→ a morphemic foot overwrites underlying prosodic structure: different strategies to form a "good" trochaic foot

(8)

а. b.

٠.

С.

d.

e.

λεlqí	~	(λέl.qi)	
	×	(λεl.qí)	*RhT:T
wíqəs	~	(wí.wə.)qəs	_
	×	(wí.qəs)	*Weight-to-Stress Foot
máqət	~	(hám.)qət	_
	×	(má.qət)	*Weight-to-Stress Foot
?íməx	~	(ʔí:.)məx	_
	X	(?í.məx)	Weight-to-Stress Foot

(10)

(10)

(11)

a.

b.

(12) An example: /hə/-insertion in Upriver

máqat, () _{Ft}	RнТ:Т	FTBIN	WtS	*á	IDL	Int	DEP
a. (má.qət)		i I	*!	*	i İ		
b. (má.)qət		*!	l i	* 	[[
c. (mə́:.)qət		I	I	*	ı *!		
d. (má.ma.)qət		l I	l I	*	! 	*!*	
e. (hə́m)qət		İ	I	*	İ		**

• morphemes may consist of no phonological content at all

- morphemes may consist of no phonological content at all
- RM demands that morphologically different forms must be phonologically different as well

- morphemes may consist of no phonological content at all
- RM demands that morphologically different forms must be phonologically different as well
- (13) Realize Morpheme (Kurisu, 2001) Let α be a morphological form, β be a morphological category, and $F(\alpha)$ be the phonological form from which $F(\alpha+\beta)$ is derived to express a morphosyntactic category β . Then RM is satisified with respect to β iff $F(\alpha+\beta) \pm F(\alpha)$ phonologically.

- morphemes may consist of no phonological content at all
- RM demands that morphologically different forms must be phonologically different as well

- (13) Realize Morpheme (Kurisu, 2001) Let α be a morphological form, β be a morphological category, and $F(\alpha)$ be the phonological form from which $F(\alpha+\beta)$ is derived to express a morphosyntactic category β . Then RM is satisified with respect to β iff $F(\alpha+\beta) \pm F(\alpha)$ phonologically.
- → a morpheme can be realized by any conceivable phonological operation a language's phonology provides

- the choice for one (non-concatenative) allomorphs in a certain context follows from:
 - 1 a preference order for allomorphs
 - markedness constrainst penalizing certain strategies for certain bases

(14) Example: epenthesis in Upriver

máqat _{Continuative}	Align	RM	IDLENGTH	*á	Int	Dep
a. má.qət		*!		*		
b. mớ:.qət] I	*!	*		
c. má.ma.qat		I		*	*!*	
☞ d. hémqət		l I		*		**
e. mə.qə́t	*!	l		*		

Kurisu's RM

Empirical problems in Kurisu's approach:

• too many ways to "do anything": unattested allomorphs in a language

Empirical problems in Kurisu's approach:

- too many ways to "do anything": unattested allomorphs in a language
- too many ways to reorder segments: unattested types of morphological metathesis

Empirical problems in Kurisu's approach:

- too many ways to "do anything": unattested allomorphs in a language
- too many ways to reorder segments: unattested types of morphological metathesis
- underlying representation (=impossible output form) can be crucial context for allomorphy-choice: impossible in Kurisu's system

Problem I: Too many ways to do anything

→ subtraction is predicted to become exponent of the continuative in Upriver

Problem I: Too many ways to do anything

- → subtraction is predicted to become exponent of the continuative in Upriver
 - in Upriver an independent deletion-process in the continuative proves that ${\rm MAX}$ (at least for stem-/ə/) must be ranked at least under INTEG

Problem I: Too many ways to do anything

- → subtraction is predicted to become exponent of the continuative in Upriver
 - in Upriver an independent deletion-process in the continuative proves that $\rm Max$ (at least for stem-/ə/) must be ranked at least under $\rm InTEG$
- (15) Max-/a/must be ranked at least under Integ

máqat _{Continuative}	Int	MC	Max-ə	Dep
a. má.ma.qət	*!*	i İ		
☞ b. hém.qət		l 1	*	**
c. há.mə.qət		*!		**

• but then, deletion of /ə/ (= one strategy to "do anything" and therefore to satisfy RM) is predicted for some stems:

 \bullet but then, deletion of /ə/ (= one strategy to "do anything" and therefore to satisfy RM) is predicted for some stems:

(16)

Problem II: Too many ways to reorder

→ a metathesizing allomorph is only specified as LINEARITY-violating: (non-adjacent) CC-metathesis is a possible morphological exponent

21 / 26

Problem II: Too many ways to reorder

- → a metathesizing allomorph is only specified as LINEARITY-violating: (non-adjacent) CC-metathesis is a possible morphological exponent → generalizations about metathesis:
 - no non-adjacent metathesis
 - only CV-metathesis is as morphological exponent

Problem II: Too many ways to reorder

- → a metathesizing allomorph is only specified as LINEARITY-violating: (non-adjacent) CC-metathesis is a possible morphological exponent → generalizations about metathesis:
 - no non-adjacent metathesis
 - ② only CV-metathesis is as morphological exponent
 - but both kinds of unattested morphological metathesis are predicted to become exponents of the continuative in Saanich

(17)

→ the choice for a continuative allomorph in Saanich depends on the lexical form of the stem, i.e. the context is masked in the non-continuative output form.

23 / 26

- → the choice for a continuative allomorph in Saanich depends on the lexical form of the stem, i.e. the context is masked in the non-continuative output form.
 - Kurisu: phonological base of a morphologically complex form must be a possible output form of the language

- → the choice for a continuative allomorph in Saanich depends on the lexical form of the stem, i.e. the context is masked in the non-continuative output form.
 - Kurisu: phonological base of a morphologically complex form must be a possible output form of the language
 - ullet otherwise, phonologically predictable changes (e.g. assignment of syllable structure) would satisfy RM as well

- → the choice for a continuative allomorph in Saanich depends on the lexical form of the stem, i.e. the context is masked in the non-continuative output form.
 - Kurisu: phonological base of a morphologically complex form must be a possible output form of the language
 - \bullet otherwise, phonologically predictable changes (e.g. assignment of syllable structure) would satisfy RM as well
 - recall Kurisu's generalization for the metathesizing continuative allomorph:
- (18) surface form in the non-continuative: continuative: CCVC \rightarrow CVCC $(q'p'\acute{e}t$ \rightarrow $q'\acute{e}p'\acute{t})$

(19)

- Kurisu predicts /?/-infixation as continuative form for those stems
- the correct generalization: vowelless CC/CCC-stems undergo metathesis

- Kurisu predicts /?/-infixation as continuative form for those stems
- the correct generalization: vowelless CC/CCC-stems undergo metathesis
- some of those stems surface as CaC in the non-continuative (due to independent phonological process) – /a/ -ephenthesis masks the context for metathesis

Summary

→ non-concatenative allomorphs are different strategies to realize a morphemic empty prosodic categories (mora, foot)

Summary

- → non-concatenative allomorphs are different strategies to realize a morphemic empty prosodic categories (mora, foot)
- \rightarrow this restricts allomorphs to certain phonological operations and avoids the mispredictions illustrated for a RM-based approach as in Kurisu (2001)

