How to linearize weight?

Jochen Trommer \& Eva Zimmermann (University of Leipzig)

UC Santa Cruz: Phlunch
February 22, 2013

Major Theories of Affix Linearization

Phonological Dislocation theories

Horwood (2002): Affixes are prefixes or suffixes to the base, but may infix under the pressure of phonological constraints

Morphological pivot affixation

Yu (2007): Affixes are prefixes or suffixes to specific (possibly internal) base positions ('pivots') and cannot be dislocated by phonological processes

Tagalog um-Infixation

	Base	Actor Focus	
	abot	umabot	'reach for, pf.'
tawag	tumaawag	'call, pf.'	

Infixation as Affixation+Phonological Dislocation (Horwod 2002)

(2) um $\quad \rightarrow \quad$ Base [
(3) V-initial Base

um-abot	NoCODA	$\operatorname{Lin}-\mu$
a. u.ma.bot	${ }^{*}$	
b. a.um.bot	${ }^{*}!$	${ }^{*}$
c. a.bu.mot	${ }^{*}$	${ }^{*}!^{*}$

(4) C-initial Base

um-tawag	NoCoDA	LiN- μ
a. um.ta.wag	${ }^{* *}!$	
b. tu.ma.wag	${ }^{*}$	${ }^{*}$
c. ta.um.wag	${ }^{* *}!$	${ }^{* *}$

Infixation as Pivot Affixation (ruzoor)

(5) um $\leftrightarrow \quad$ Base $[\cdots] \quad$ V

Possible pivots for affixation (Yu 2007)

(6)
a. Initial pivot
(i) First consonant/onset
(ii) First vowel/nucleus
(iii) First syllable
b. Final pivot
(i) Final vowel/nucleus
(ii) Final syllable
c. Prominence pivot
(i) Stressed syllable
(ii) Stressed vowel/nucleus

Mora affixation

(7) Emphatic adjectives in Shizuoka Japanese
(Davis\&Ueda 2006) Adjective Emphatic Form

Central Question of this Talk

How are μ-affixes linearized?

Our claim

$>\mu$-affixation is pivot affixation

1. Introduction
2. A typology of mora affixation
3. Against phonological μ-dislocation
3.1 Lack of non-local infixation
3.2 Coexistence of μ-affixes
3.3 Lack of Variable Infixation
3.4 Cases of Fixed Infixation: Shizuoka Japanese
4. Conclusion

A typology of mora affixation

Morphological μ 's

I. A μ as morpheme
(8) Gidabal (Geytenbeek\&Geytenbeek 1971, Kenstowicz\&Kisseberth 1977)

BASE		Imperative
gida	'to tell'	gida:
ma	'to put'	ma:

II. A μ is part of a morpheme
(9) Plural suffix /-we?/ in Zuni

Base	Plural	
lupa	'box of ashes'	lupa:we?

homata 'juniper tree' homata:we?

Realization of a μ-affix

Vowel lengthening:		\rightarrow	
Gemination:		\rightarrow	
(Epenthesis:)	$/_{c}^{\sigma} \begin{gathered} \sigma \\ \mathrm{C} \\ \mathrm{~V} \end{gathered}+\mu$	\rightarrow	
(Reduplication:)		\rightarrow	

Empirical study: loci of μ-realization

- 25 cases of μ-affixation in 21 languages

Empirical study: loci of μ-realization

- 25 cases of μ-affixation in 21 languages
- excludes:
- cases of vowel-lengthening for monosyllabic bases (e.g. Western Nilotic)
- patterns of templatic morphology
- patterns where reduplication/epenthesis is the only exponent of a morpheme
- the same μ-affixation pattern in languages of the same language family

	(classification according to AUTOTYP)		
Language	Stock	Area	Continent
Saanich	Salishan	Alaska-Oregon	WN America
Southern Sierra Miwok	Yokuts-Utian	California	WN America
Nootka	Wakashan	Alaska-Oregon	WN America
Aymara	Jaqui	Andean	S America
Quechua	Quechuan	Andean	S America
Guajiro	Arawakan	NE South America	S America
Hiaki	Uto-Aztecan	Mesoamerica	C America
Shoshone	Uto-Aztecan	Mesoamerica	C America
Tepecano	Uto-Aztecan	Mesoamerican	C America
Alabama	Muskogean	E North America	EN America
Zuni	Zuni	Basin and Plains	EN America
Hausa	Chadic	African Savannah	Africa
Asante Twi (Akan)	Kwa	African Savannah	Africa
Classical Arabic	Semitic	N Africa	Africa
Arbizu Basque	Basque	Europe	W and SW Eurasia
Slovak	Slavic	Europe	W and SW Eurasia
Keley-i	Austronesian	Oceania	S/SE Asia
Shizuoka Japanese	Japanese	N Coast Asia	N-C Asia
Tawala	Austronesian	Oceania	NG and Oceania
Lardil	Tangkic	N Australia	Australia
Gidabal	Pama-Nyungan	S Australia	Australia

Mora affixation: Distribution of Languages

language families, WALS

Where (in their base) are morphological μ 's realized?

Where (in their base) are morphological μ 's realized?

\rightarrow on the final vowel.
(10) Gidabal (Geytenbeek\&Geytenbeek 1971, Kenstowicz\&Kisseberth 1977)

BASE		IMPERATIVE
gida	'to tell'	gida:
ma	'to put'	ma:
jaga	'to fix'	jaga:
ga:da-li-wa	'keep on chasing'	ga:daliwa:

Where (in their base) are morphological μ 's realized?

\rightarrow on the first vowel.
(11) Shizuoka Japanese
(Davis\&Ueda 2006)

BASE		EMPHATIC
zonzai	'impolite'	zo:nzai
sup:ai	'sour'	su:p:ai
onzukutai	'ugly'	o:nzukutai
kandarui	'languid'	ka:ndarui
okıanai	'scary'	o:kıanai

Where (in their base) are morphological μ 's realized?

\rightarrow on the consonant following the first vowel.
(12) Shoshone (Crum\&Dayley 1993, Haugen 2008, McLaughlin 2012)

BASE		Durative
kat $\dot{\ddagger}$	'sit'	kat: \dot{f}
jitsi	'get up, fly'	jit:si
jakai	'cry'	jak:ai
nemi	'travel'	nem:i
maka	'feed'	mak:a
taikwa	'speak'	taik:wa

Where (in their base) are morphological μ 's realized?

\rightarrow after the first vowel: epenthesis.
(13) Tepecano
(Mason 1916, Haugen 2008)

BASE		Plural
gogoc	'dog'	go?goc
imai	'squash'	i?mai
dudu:r	'jaguar'	duPduir
asa:k	'net'	aisa:k

μ-affixation as Pivot Affixation

Pivots for μ-affixation

- first/last μ
- first/last σ
\rightarrow they describe all and only the possible landing sites for μ-affixes

Against phonological μ-dislocation

Arguments against Phonological μ-Dislocation

- Lack of non-local infixation
- Coexistence of μ-affixes
- Lack of Variable Infixation
- Cases of Fixed Infixation

The general logic of μ-dislocation approaches

(14) Long vowels in Gidabal

μ + gida		${ }^{*} \mathrm{C}:$	Lin $-\mu$	${ }^{*} \mathrm{~V}:$
	a.	gi $_{\mu}$ da [gi:da]		
b.	gid $_{\mu}$ a [gid:a]	${ }^{*}!$	${ }^{*}$	${ }^{*}$

The general logic of μ-dislocation approaches

(14) Long vowels in Gidabal

μ + gida		${ }^{*} \mathrm{C}:$	Lin $-\mu$	${ }^{*} \mathrm{~V}:$
	a.	gi $_{\mu}$ da [gi:da]		
b.	gid_{μ} a [gid:a]	${ }^{*}!$	${ }^{*}$	${ }^{*}$

(15) Geminates in Shoshone

μ + maka		${ }^{*} \mathrm{~V}:$	$\operatorname{LIN}-\mu$	${ }^{*} \mathrm{C}:$
a. \quad ma $_{\mu}$ ka [ma:ka]	${ }^{*}!$			
	b.	mak_{μ} a [mak:a]		${ }^{*}$

Arguments against Phonological μ-Dislocation

- Lack of non-local infixation
- Coexistence of μ-affixes
- Lack of Variable Infixation
- Cases of Fixed Infixation

Lack of non-local infixation

- the pivots first/last $\mu /$ first/last σ are sufficient to predict all attested cases of μ-affixation

Lack of non-local infixation

- the pivots first/last $\mu /$ first/last σ are sufficient to predict all attested cases of μ-affixation
- phonological disfixation accounts inherently predict non-local infixation
(16) Non-local gemination in unattested Shoshone,

BASE	μ-AFFIXED FORM
gadali	gad:ali
pukalimbu	pukal:imbu
sandagumkil	sandag:umkil

Serious misprediction: non-local infixation

(17) Shoshone'

gadali $+\mu$	*V:	$\mathrm{FAITH}_{\sigma]}$	LIN- μ
a. gadali $_{\mu} \quad$ [gadali:]	*!	*	
b. $\operatorname{gadal}_{\mu} \mathrm{i}$ [gadal:i]		*!	*
c. gada $_{\mu} \mathrm{li}$ [gada:li]	*!		**
d. $\operatorname{gad}_{\mu} \mathrm{ali}$ [gadiali]			***

Arguments against Phonological μ-Dislocation

- Lack of non-local infixation
- Coexistence of μ-affixes
- Lack of Variable Infixation
- Cases of Fixed Infixation

Moraic Distinctiveness

- different μ-affixes in the same language result in different outputs (Guerssel\&Lowenstamm 1990, Lowenstamm 2003)
(18) Binyanim in Classical Arabic (McCarthy 1979, McCarthy\&Prince 1990)

	'write'	'do'
Binyan I	katab	fa?al
Binyan II	kat:ab	fa?:al
Binyan III	ka:tab	fa:?al

Problem for the Dislocation Approach

If both Binyanim are μ-prefixes
they should infix in exactly the same way

Classical Arabic under pivot-affixation

(19) Two μ-affixes in Classical Arabic

Binyan II $\leftrightarrow \mu /\left[\mu _\quad\right.$ (Gemination)
Binyan III $\leftrightarrow \mu /\left[_\mu \quad\right.$ (Vowel lengthening)
(20) Binyan II: Gemination

(21) Binyan III: Vowel Lengthening

Input: = a.	*×	$\begin{array}{ccc}\sigma & \mu \\ \uparrow & \downarrow \\ \mu & \downarrow\end{array}$	*V:
18 b.			*
c.	*!		

Arguments against Phonological μ-Dislocation

- Lack of non-local infixation
- Coexistence of μ-affixes
- Lack of Variable Infixation
- Cases of Fixed Infixation

A serious misprediction: Shoshone"

- only CV, CVC- syllables are licit
- the rightmost C that can be geminated (not followed by another C), is lengthened
(22) Shoshone"

BASE	μ-AFFIXED FORM
mataku	matak:u
makantu	mak:antu
matalkufti	mat:alkufti

A serious misprediction: Shoshone'

(23) Shoshone'

$]_{\text {Base }}+\mu$		*V:	LIN- μ	* C :
a. ma.ta.ku ${ }_{\mu}$	(mataku:)	*!		
b. ma.tak ${ }_{\mu}$ u	(matak:u)			*
c. ma.ta ${ }_{\mu}$.ku	(mata:ku)	*!	*	

A serious misprediction: Shoshone'

(23) Shoshone'

$]_{\text {Base }}+\mu$		*V:	LIN- μ	* C :
a. ma.ta.ku ${ }_{\mu}$	(mataku:)	*!		
b. ma.tak ${ }^{\text {u }}$	(matak:u)		*	*
c. ma.ta ${ }_{\mu} \cdot \mathrm{ku}$	(mata:ku)	*!	*	
a. ma.kan.tu ${ }_{\mu}$	(makantu:)	*!		
b. mak ${ }_{\mu} \mathrm{an} . t \mathrm{u}$	(mak:antu)		***	*

A serious misprediction: Shoshone'

(23) Shoshone'

$]_{\text {Base }}+\mu$			*V:	LIN- μ	${ }^{*} \mathrm{C}$:
a.	ma.ta.ku ${ }_{\mu}$	(mataku:)	*!		
E.	ma.tak ${ }^{\text {u }}$	(matak:u)		*	*
c.	ma.ta ${ }_{\text {. }}$.ku	(mata:ku)	*!	*	
a.	ma.kan.tu ${ }_{\mu}$	(makantu:)	*!		
\& ${ }^{\text {b }}$	mak_{μ} an.tu	(mak:antu)		***	*
a.	ma.tal.kuf.t	(matalkuftii)	*!		
\% ${ }^{\text {b }}$	mat $_{\mu}$ al.kuf.ti	(mat:alkufi)		*****	*

\rightarrow Variable μ-affixation: infixation of morphological μ is unstoppable

... but isn't Keley-i such a language?

Samek-Lodovici (1992):
'Gemination is caused by random affixation of a moraic morpheme. A very simple set of independently motivated constraints determines its eventual location and what segment is involved.' (p.8)

Gemination in Keley-i

Hohulin (1971), Hohulin\&Kenstowicz (1979), Archangeli (1987), Lombardi\&McCarthy (1991)

- three tenses (Prs, Pst, Fut) and five foci

Gemination in Keley-i

Hohulin (1971), Hohulin\&Kenstowicz (1979), Archangeli (1987), Lombardi\&McCarthy (1991)

- three tenses (Prs, Pst, Fut) and five foci
- Samek-Lodovici's generalization:
gemination of the leftmost consonant that can be geminated in the Prs+Fut (=non-perfect)

Gemination in Keley-i

Hohulin (1971), Hohulin\&Kenstowicz (1979), Archangeli (1987), Lombardi\&McCarthy (1991)

- three tenses (Prs, Pst, Fut) and five foci
- Samek-Lodovici's generalization:
gemination of the leftmost consonant that can be geminated in the Prs+Fut (=non-perfect)
(24) Non-perfect gemination
(Hohulin\&Kenstowicz 1979)
Access.Focus Ben.Foc
?i-p:ili ?i-pzili-Ran
Pi-d:uyag Ri-d:uyag-an
Subj.Focus Obj.Focus Ref.Foc
um-pil:i pilxi-?en pilii-Ran
um-duy:ag duy:ag-en duy:ag-an

Analysis for Keley-i in Samek-Lodovici (1992)

- left-edge proximity for the affix
- syllabic wellformedness: only CV/CVC are licit

Analysis for Keley-i in Samek-Lodovici (1992)

- left-edge proximity for the affix
- syllabic wellformedness: only CV/CVC are licit

ii. Medial gemination

Gemination in Keley-i I

(25) Non-perfect root-initial gemination
(Hohulin\&Kenstowicz 1979) Access.Focus Ben.Foc

Fut	?i-p:ili	Pi-p:ili-Pan	
PASt	Pim-pili	Pim-pili-Pan	'to chose'
Pres	ke-Pi-p:ili	ke-Pi-p:ili-?i	
Fut	Pi-d:uyag	Pi-dxuyag-an	
Past	Pin-duyag	Pin-duyag-an	'to pour'
Pres	ke-Pi-d:uyag	ke-Ti-d:uyag-i	

Gemination in Keley-i II

(26) Non-perfect root-medial gemination
(Hohulin\&Kenstowicz 1979)

	Subj.Focus	Obj.Focus	Ref.Foc	
Fut	um-pil:i	pil:i-Ren	pil:i-Pan	
Past	p-im:-ili	p-in-ili	p-in-ili-Pan	'to chose'
Pres	ka-Rum-pil:i	ke-pil:i-Ra	ke-pil:i-?i	
FUt	um-duy:ag	duy:ag-en	duy:ag-an	
PASt	d-im:-uyag	d-in-uyag	d-in-uyag-an	'to pour'
Pres	ka-Pum-duy:ag	ka-duy:ag	ka-duy:ag-i	

Morphological analysis for Keley-i

	Focus					
	Access.	Ben.	Sbj.	Obj.	Ref.	
Pst						
Prs	Pi-	Pi-	Pum-	$k e-$	$k e-$	
Fut	Pi-	Pi-	Pum-			

initial G.

\rightarrow partially complementary distribution of initial/medial μ-affixation

Morphological analysis for Keley-i

	Focus					stative
	Access.	Ben.	Sbj.	Obj.	Ref.	
Pst						? i-
Prs	Pi-	Pi-	Pum-	ke-	ke-	? $\mathrm{i}-$
Fut	? i-	Pi-	?um-			?i-

initial G.

\rightarrow partially complementary distribution of initial/medial μ-affixation
\rightarrow but: both gemination patterns cooccur in the stative paradigm

Morphological analysis for Keley-i

	Focus					stative
	Access.	Ben.	Sbj.	Obj.	Ref.	
Pst						? i-
Prs	?i-	?i-	?um	ke-	ke-	? i
Fut	Pi-	Pi-	Pum-			3i-

initial G.

\rightarrow partially complementary distribution of initial/medial μ-affixation
\rightarrow but: both gemination patterns cooccur in the stative paradigm
(27) Initial and medial gemination in Keley-i

> Pst
bitu 'to put'

Prs
ke-Pi-b:it:u-?an
(Hohulin\&Kenstowicz 1979)

Fut

me-Pi-b:it:u-Pan

Morphological analysis for Keley-i

There are two μ-affixes!

Morphological analysis for Keley-i

There are two μ-affixes!
I. $\quad \mu /[\ldots \mu \quad \leftrightarrow \quad[-$ pst, Access \vee Ben \vee Stat $]$
II. $\mu /\left[\sigma_{-} \quad \leftrightarrow \quad[-\mathrm{pst}, \operatorname{Sbj} \vee \operatorname{Obj} \vee \operatorname{Ref} \vee \operatorname{Stat}]\right.$

Arguments against Phonological μ-Dislocation

■ Lack of non-local infixation

- Coexistence of μ-affixes

■ Lack of Variable Infixation

- Cases of Fixed Infixation

Adjective Emphatic Form

| a.katai
 osoi
 takai | kattai
 ossoi
 takkai | 'hard'
 'slow'
 'high' | CV.Ç. \ldots |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\Rightarrow \Rightarrow$ CV.Ç....

Shizuoka Japanese in Davis \& Ueda (2006)

(29) CVOV

μ-katai		σ-Cond	*V:	Dep n	${ }^{*} \mathrm{C}$:
a. $\mathrm{kat}_{\mu} \mathrm{ai}$	(kat:ai)				*
b. ka $\mathrm{n}_{\mu} \mathrm{tai}$	(kantai)			*!	
c. $\mathrm{ka}_{\mu} \mathrm{tai}$	(ka:tai)		*!		

(30) CVOV

μ-hade			σ-Cond	*V:	Dep n	*C:
	a. $\mathrm{had}_{\mu} \mathrm{e}$	(had:e)	*C:	*		*
	b. ha n_{μ} de	(hande)			*	
	c. $\mathrm{ha}_{\mu} \mathrm{de}$	(ha:de)		*!		

Shizuoka Japanese in Davis \& Ueda (2006)

(31) CVN.OV

μ-zonzai	σ-Cond	${ }^{*}$ V:	DEP n	${ }^{*} \mathrm{C}_{\text {: }}$	
a. zonz ${ }_{\mu}$ ai	(zon.z:ai)	${ }^{*}{ }^{\circ}\left[\mathrm{C}_{\mu}!\right.$	${ }^{*}$		${ }^{*}$
	b. zon n_{μ} zai	(zonn.zai)	$\left.{ }^{*} \mathrm{CC}\right]_{\sigma}!$		${ }^{*}$
	c. zo ${ }_{\mu}$ nzai	(zo:n.zai)		${ }^{*}$	

Sh. Japanese Linearization by Pivot Affixation

(32) $\mu \leftrightarrow \quad$ Base $[\mu-$

Sh. Japanese Linearization by Pivot Affixation

(32) $\quad \mu \quad \rightarrow \quad$ Base $[\mu$
(33)
a.

C.

Shizuoka Japanese as a Problem for Dislocation

Lin $-\mu$ must be ranked below *V: to allow μ-metathesis in n-epenthesis
(34) CVOV

(35) CVOV

μ-hade	σ-Cond	${ }^{*} \mathrm{~V}:$	$\operatorname{Lin} \mu$	DEP n	${ }^{*} \mathrm{C}:$	
a. had $_{\mu} \mathrm{e} \quad$ (had:e)	${ }^{*} \mathrm{C}:$	${ }^{*}$	${ }^{* *}$		${ }^{*}$	
b. ha n_{μ} de	(hande)			${ }^{*}$	${ }^{*}$	
c. ha $_{\mu}$ de	(ha:de)		${ }^{*}!$			

Shizuoka Japanese as a Problem for Dislocation

Lin $-\mu$ must be ranked above * V : to block gemination beyond the first σ
(36) CVN.OV

μ-kata			σ-Cond	*V:	Lin_{μ}	Dep n	${ }^{*} \mathrm{C}$:
	a. onz ${ }_{\mu}$ okutai	(on.z:okutai)	${ }^{*}{ }_{\sigma}\left[\mathrm{C}_{\mu}\right.$!		**		*
	a'. onzok ${ }_{\mu}$ utai	(on.zok:utai)			***		*
	b. on n_{μ} zai	(onn.zokutai)	$\left.{ }^{*} \mathrm{CC}\right]_{\sigma}$!		*	*	
	c. o_{μ} nzokutai	(o:n.zokutai)		*			

(37) CVN.OV

μ-kata			σ-Cond	Lin_{μ}	*V:	Dep n	${ }^{*} \mathrm{C}:$
	a. onz ${ }_{\mu}$ okutai	(on.z:okutai)	${ }^{*}{ }_{\sigma}\left[\mathrm{C}_{\mu}\right.$!	**	*		*
	a'. onzok ${ }_{\mu}$ utai	(on.zokıutai)		*!**			*
	b. on n_{μ} zai	(onn.zokutai)	$\left.{ }^{*} \mathrm{CC}\right]_{\sigma}$!			*	
18	c. o_{μ} nzokutai	(o:n.zokutai)			*		

μ-Alignment in Davis \& Ueda (2006:4)

(38) Align-L($\left.\mu_{\mathrm{e}}, \mathrm{Wd}\right)$

Align the emphatic mora with the beginning (left edge) of the word.
"In our analysis, the evaluation of the alignment constraint in (5) is with respect to the syllable so that if the emphatic mora $\left(\mu_{\mathrm{e}}\right)$ is realized in the first syllable of the word then the constraint is satisfied; it is violated if it is realized beyond the first syllable."

Conclusion

- μ-affixation is pivot-affixation

Conclusion

- μ-affixation is pivot-affixation
- the alternative of phonological dislocation

Conclusion

- μ-affixation is pivot-affixation
- the alternative of phonological dislocation
- predicts unattested instances of non-local infixation

Conclusion

- μ-affixation is pivot-affixation
- the alternative of phonological dislocation
- predicts unattested instances of non-local infixation
- fails to predict instances of Fixed Infixation without additional (stipulated) machinery

Conclusion

- μ-affixation is pivot-affixation
- the alternative of phonological dislocation
- predicts unattested instances of non-local infixation
- fails to predict instances of Fixed Infixation without additional (stipulated) machinery
- fails to predict the coexistence of different μ-affixation patterns in one language

Conclusion

- μ-affixation is pivot-affixation
- the alternative of phonological dislocation
- predicts unattested instances of non-local infixation
- fails to predict instances of Fixed Infixation without additional (stipulated) machinery
- fails to predict the coexistence of different μ-affixation patterns in one language
- predicts unattested instances of variable μ-infixation

1. Introduction
2. A typology of mora affixation
3. Against phonological μ-dislocation
3.1 Lack of non-local infixation
3.2 Coexistence of μ-affixes
3.3 Lack of Variable Infixation
3.4 Cases of Fixed Infixation: Shizuoka Japanese
4. Conclusion

Literature

Archangeli, Diana (1987), Consonant assimilation in Keley-i, in 'Coyote Papers 6', University of Arizona.
Crum, Beverly and Jon Dayley (1993), Western Shoshoni grammar, Boise State University, Boise.
Davis, Stuart and Isao Ueda (2006), 'Prosodic vs. morphological mora augmentation', Lexicon Forum 2, 121-143.
Geytenbeek, Brian and H. Geytenbeek (1971), Gidabal Grammar and Dictionary, Australian Institute of Aboriginal Studies, Canberra.

Haugen, Jason (2008), Morphology at the interfaces. Reduplication and noun incorporation in Uto-Aztecan, John Benjamin. Hohulin, Lou and Michael Kenstowicz (1979), 'Keley-i phonology and morphophonemics', South-East Asia Linguistic Studies 4, 241-254.
Hohulin, R. M. (1971), Cohesive organisation in Keley-i Kallahan, in R. M.Hohulin and L.Hoholin, eds, 'Papers in Philippine Linguistics', Vol. 4, pp. 1-17.

Horwood, Graham (2001), Antifaithfulness and subtractive morphology. Ms.,Rutgers University, available as ROA 466-0901.
Kenstowicz, Michael and Charles Kisseberth (1977), Topics in Phonological Theory, Academic Press, New York.
Lombardi, Linda and John J. McCarthy (1991), 'Prosodic circumscription in Choctaw morphology', Phonology 8, 37-71.
Mason, J. Alden (1916), 'Tepecano, a Piman language of western mexico', Annals of the New York Academy of Science XXV, 309-416.
McCarthy, J. (1979), Formal Problems in Semitic Phonology and Morphology, PhD thesis, Massachusetts Institute of Technology.
McCarthy, John and Alan Prince (1999), Faithfulness and identity in prosodic morphology, in R.Kager, H.van der Hulst and W.Zonneveld, eds, 'The prosody-morphology interface', Cambridge: Cambridge University Press, pp. 218-309.

McLaughlin, John (2012), Shoshoni grammar, LINCOM.
Newman, Stanley (1965), Zuni grammar, University of New Mexico Publications.
Saba Kirchner, Jesse (2007), 'The phonology of lexical underspecification', ms. University of California, online available at http://jessesabakirchner.com/docs/2007-phonology-of-lexical-underspecification.pdf.
Samek-Lodovici, Vieri (1992), A unified analysis of crosslinguistic morphological gemination, in P.Ackema and M.Schoorlemmer, eds, 'Proceedings of CONSOLE 1', Holland Academic Graphics, The Hague, Utrecht, pp. 265-283.
Yu, Alan C. L. (2007), A Natural History of Infixation, Oxford University Press, Oxford.

