Allomorphy between tone and segments in Yucunany
 Mixtepec
 An optimality-theoretic account

Eva Zimmermann (Leipzig University)

October 10, 2014

P\&P 10, Konstanz
va Zimmermann (Leipzig U)
Allomorphy in Yucunany Mixtepec P\&P 10, Konstanz

Non-concatenative PCSA

- non-concatenative 'PCSA': in (3), different operations (gemination, vowel lengthening) apply
■ both operations can be analysed in autosegmental phonology as addition of a μ
(3) Non-concatenative 'PCSA' in Asante Twi (Dolphyne 1996, Paster 2010)

	Base		Past (+ОвJ)	Possible analysis:	
a.	to dane	'to buy' 'to turn'	to: dane:	$\left.\mathrm{t}\right\|_{0} ^{\mu+\mu} \rightarrow$	
b.	nom spame:	'to drink' 's/he sewed (it)'	nom: opam:		$\begin{array}{cc} \mu & \mu \\ \mid & \vdots \\ 0 & \dot{m} \end{array}$

(1) PCSA

(cf., for example, Paster 2006)
The surface representation/effect of one morpheme M is different depending on the phonological context and this difference cannot be attributed to phonological changes independently expected in this context.
(2) Segmental PCSA in Moroccan Arabic

	Base	3.Sc.MASC	
a.	Jafu	Safuh	'error'
b.	ktab	ktabu	'book'

(Mascaro 2007)

Possible analysis:

 3.Sc.M $\leftrightarrow / \mathrm{h} / / \mathrm{V}$ 3.Sg.M $\leftrightarrow / \mathrm{u} / / \mathrm{C}$Introduction

- propose an analysis for a phonologically predictable allomorphy in Yucunany Mixtepec Mixtec (=YM)
- a morphological low tone with different surface effects, or
- the realization of additional segments
- an argument for contrastive prosodic specification in the underlying form:
different underlying syllable structure $=$ different surface effects
\rightarrow a prediction of OT and Richness of the Base

Mixtec languages

■ indigenous languages, spoken in southern Mexico (Otomanguean)

- most communities have less than 50.000 speakers (McKendry 2013)
(4)

(©OpenStreetMap contributors, www.openstreetmap.org/copyright)

Allomorphy in Yucunany Mixtepec
\qquad

Eva Zimmermann (Leipzig U) Allomorphy in Yucunany Mixtepec P\&P 10, Konstanz $5 / 32$
Allomorphy in Yucunany Mixtepec

Background on Yucunany Mixtepec Mixtec (YM)
(Pike\&Ibach 1978, Paster\&Beam 2004a,b, Paster 2007,2012)

- no codas, restricted set of initial onset clusters
- three tones: $\mathrm{H}(=\mathrm{V}), \mathrm{M}(=\mathrm{V}), \mathrm{L}(=\mathrm{V})$, and contour tones
- vowel length is not contrastive - default assumption: TBU= σ ('VV(VV)' notated to have enough space for contour tones!)
- underlined V's=nasalized V's

Eva Zimmermann (Leipzig U) Allomorphy in Yucunany Mixtepec \qquad P\&P 10, Konstanz 6/32
Allomorphy in Yucunany Mixtepec
1.Sg formation in YM

- a low tone is added and creates a contour on the final σ (5-a)
- a low tone overwrites M on final σ (5-b)

■ a segmental allomorph /-yù/ surfaces (5-c)
(5) Tonal allomorphy in Yucunany Mixtepec (Paster\&Beam 2004:3-4)

a.	nàmá	'soap'	nàmáà	'my soap'	L H	\rightarrow L HL
	tìtzi	'stomach'	tìtziì	'my stomach'	L M	$\rightarrow \mathrm{LML}$
b.	la'la	'mucus'	la'là	'my mucus'	M M	$\rightarrow \mathrm{M}$
	xá'nu	'cigarette'	xá'nù	'my cigarette'	HM	$\rightarrow \mathrm{HL}$
C.	sòkò	'shoulder'	sòkòyù	'my shoulder'	L L	$\rightarrow \mathrm{LL}$ yù
	tutù	'paper'	tutùyù	'my paper'	M L	$\rightarrow \mathrm{ML}$ yù

1.Sg formation in YM: context generalizations
A. a low tone is added and creates a contour for H -final stems
(6) nàmá 'soap' nàmáà 'my soap' L H \rightarrow L HL
xinii hat xíniii my hat H LH \rightarrow HLHL
B. a low tone overwrites \mathbf{M} on final σ

(7) \quad la'la	'mucus'	la'là	'my mucus'	$\mathbf{M M}$	$\rightarrow \mathbf{M L}$	
	xánu	'cigarette'	xá'nù	'my cigarette'	$\mathbf{H M}$	$\rightarrow \mathbf{H} \mathbf{L}$

\rightarrow if this would not create an LH L
(8) yùúti 'sand' yùútiì 'my sand' LHM \rightarrow LH ML yòóso 'metate' yòósoò 'my metate' LHM \rightarrow LH ML
\rightarrow or an L L
(9) titzi 'stomach' titziì 'my stomach' $L \boldsymbol{M} \rightarrow \mathrm{LML}$ kwà'a 'man's sister' kwà’aà 'my man's sister' LM \rightarrow LML
C. a segmental allomorph /-yù/ surfaces if the stem ends in a L-toned σ

$$
\begin{array}{llllll}
\text { (10) } \quad \begin{array}{llll}
\text { sòkò } & \text { 'shoulder' } & \text { sòkòyù } & \text { 'my shoulder' }
\end{array} \quad \mathrm{L} \mathbf{L} & \rightarrow \mathrm{~L} \text { L yù } \\
& \text { tutù } & \text { 'paper' } & \text { tututyù } & \text { 'my paper' } & M \mathbf{L}
\end{array} \rightarrow M \mathbf{L} \text { yù }
$$

Eva Zimmermann (Leipzig U) Allomorphy in Yucunany Mixtepec P\&P 10, Konstanz $\quad 9 / 32$

[^0]Theoretical question

Is a monorepresentational analysis possible?

- Why does an additional low tone sometimes creates a new contour tone and sometimes overwrites an underlying base tone?
- How can the addition of a tone and the realization of a segmental string follow from a single underlying representation?
- 1.Sc is 'marked by a floating L tone that associates to the end of the root' (p.71)
- a different allomorph /yù/ for bases ending in L
\rightarrow homophony avoidance

Eva Zimmermann (Leipzig U)
Allomorphy in Yucunany Mixtepec
P\&P 10, Konstanz 10 / 32
(1) Non-realization of /yu/

- the /yu/ underlyingly lacks a σ node and since $\operatorname{Dep}-\sigma$ (11-a) is higher ranked than Max-S (11-b), the morpheme is preferably not realized
$(\rightarrow$ morphemes that are realized in all contexts have an underlying σ)
- the L must be realized due to undominated Max-L (11-c)

A segmental /yu/ + L; the former only realized as last resort

$$
1 . \mathrm{SG} \leftrightarrow{ }^{\mathrm{L}} \mathrm{yu} / \#
$$

Eva Zimmermann (Leipzig U)
Allomorphy in Yucunany Mixtepec
P\&P 10, Konstanz 13/32

A monorepresentational analysis for $Y M$
(12) \quad Preference for not realizing the $/ y u /$ but realization of the L-tone $>$ (6)

					L_{a} yu		$\begin{gathered} \text { Max } \\ L \end{gathered}$	$\begin{gathered} \text { Dep } \\ \sigma \end{gathered}$	$\begin{gathered} \text { Max } \\ S \end{gathered}$
a.							*!		**
b			$\begin{gathered} \left.\right\|_{i} ^{1} \\ \sigma_{i} \\ \text { na } \end{gathered}$	$\begin{gathered} \mathrm{H}_{2} \\ \left.\right\|_{\text {ii }} \\ \sigma_{\mathrm{ii}} \end{gathered}$	a	$\begin{gathered} \mathrm{L}_{\mathrm{a}} \mathrm{a} \\ \vdots \\ \dot{\sigma} \\ \mathrm{yu} \end{gathered}$		*!	
C			$\begin{gathered} \hline \mathrm{L}_{1} \\ \mid \\ \sigma \\ \mathrm{na} \end{gathered}$		$\begin{gathered} \hline \mathrm{H}_{2} \\ \stackrel{\cdot}{\sigma} \\ \text { ma } \end{gathered}$				**

$\begin{array}{ccl}\text { (11) } & \text { Dep } & \text { Assign a violation mark for every output } \sigma \text { without } \\ & \sigma & \text { an input correspondent. }\end{array}$
b. Max Assign a violation mark for every input segment S without an output correspondent.
c. Max Assign a violation mark for every input L-tone withL out an output correspondent.

[^1]Allomorphy in Yucunany Mixtepec
P\&P 10, Konstanz

A monorepresentational analysis for YM
(2) Contour creation vs. overwriting

- contour tones are penalized by ${ }^{*} \operatorname{ConTOUR}_{\sigma}\left(={ }^{*} \mathrm{CNT}_{\sigma}\right)(13-\mathrm{a})$
- a contour is created with base-final H's since MAx-H (13-b) and Max-L dominate * CNT_{σ}
■ overwriting is predicted since ${ }^{*} \mathrm{CNT}_{\sigma}$ dominates MAx-M (13-c)
(13) a. $\quad{ }^{*} \mathrm{CNT}_{\sigma}$ Assign a violation mark for every σ that is associ-
${ }^{*} \mathrm{CNT}_{\sigma}$ ated to more than one tone. (Yip 2002:80)
b. Max Assign a violation mark for every input H-tone H without an output correspondent.
c. Max Assign a violation mark for every input M-tone M without an output correspondent.
(14) Floating L creates a contour with base-final $H>$ (6)

	$\begin{array}{c:c:c} \text { Max } & \text { Max } & \text { Dep } \\ L & H & \sigma \end{array}$	${ }^{*} \mathrm{CNT}_{\sigma}$	$\begin{gathered} \text { Max } \\ M \end{gathered}$	$\begin{gathered} \text { MAX } \\ \mathrm{S} \end{gathered}$
1是 a .	1 1 1 1 1 1 1 1 1 1	*		**
b.	$\begin{array}{llll} 1 & & 1 \\ 1 & *! & 1 \\ 1 & * & 1 \\ 1 & & 1 \\ 1 & & 1 \end{array}$			**

Eva Zimmermann (Leipzig U)
Allomorphy in Yucunany Mixtepec
P\&P 10, Konstanz
17/32

A monorepresentational analysis for YM
(3) No adjacent L-initial syllables
no overwriting of M if two adjacent σ 's both associated with an L at their left edge would result

- a positional, non-local OCP (16) banning two adjacent σ 's starting both with an L
(16) $\quad * \mathrm{~L}_{\sigma}^{\mathrm{L}} \sigma$ Assign a violation mark for every pair of adjacent σ 's that are associated with an initial L.

Floating L overwrites a base-final $M>$ (7)

	Max L	Max H	Dep σ	${ }^{*} \mathrm{CNT}_{\sigma}$	Max M	$\begin{gathered} \text { MAX } \\ S \end{gathered}$
a.			$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	*!		**
b.			$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \vdots \\ & 1 \end{aligned}$		*	**

Eva Zimmermann (Leipzig U)
Allomorphy in Yucunany Mixtepec
P\&P 10, Konstanz
18/32

A monorepresentational analysis for YM
(17) \quad No adjacent L-initial σ : Contour creation for M-final bases $I>$ (8)

	Max L	${ }^{\mathrm{L}} \sigma^{\mathrm{L}}$ σ	${ }^{*} \mathrm{CNT}_{\sigma}$	$\begin{gathered} \text { MAX } \\ M \end{gathered}$	$\begin{gathered} \text { Max } \\ S \end{gathered}$
时 a .			**		**
b.		*!	*	*	**

(18) No adjacent L-initial σ : Contour creation for M-final bases II >(9)

$\begin{array}{ccc}\mathrm{L}_{1} & \mathrm{M}_{2} & \mathrm{~L}_{\mathrm{a}} \\ \mid & \mid & \\ \sigma_{\mathrm{i}} & \sigma_{\mathrm{ii}} & \\ \mathrm{ti} & \mathrm{tzi} & \mathrm{yu}\end{array}$	Max L	${ }^{\mathrm{L}} \sigma^{\mathrm{L}} \sigma$	${ }^{*} \mathrm{CNT}_{\sigma}$	$\begin{gathered} \text { Max } \\ M \end{gathered}$	$\begin{gathered} \text { MAX } \\ S \end{gathered}$
10 a .			*		**
b.		*!		*	**

[^2] Allomorphy in Yucunany Mixtepec P\&P 10, Konstanz
(20) No adjacent L's: realization of /-yù/ >(10)

	$\begin{array}{c:c} & \\ *[T T] & \mathrm{Max} \\ & L \end{array}$	$\begin{array}{c:l} \text { DEP } & * \mathrm{~L}^{\mathrm{L}} \sigma \\ \sigma & \end{array}$	$\begin{gathered} \text { MAX } \\ S \end{gathered}$
a.	$\begin{aligned} & \\ & \\ & * \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	।	**
b.	$\begin{array}{ll} 1 & \\ 1 & *! \\ 1 & * \\ 1 & \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	**
C.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{array}{l:l} & : \\ * & \text { * } \\ \vdots & * \\ 1 & \end{array}$	

Eva Zimmermann (Leipzig U \qquad

- association of L to bases ending in an L is excluded by *[TT]: contour tones (adjacent tones associated to the same TBU) must be different

■ realization of /yu/ as last resort to satisfy MAx-L becomes optimal
Assign a violation mark for every pair of adjacent identical tones that are associated to one TBU.

YM: complete ranking

(21)

- a monorepresentational analysis:
- a floating tone and
- a segmental string that is only realized as last resort
- the learner is faced with an instance of incomplete neutralization: in 4 of 5 possible (phonological) contexts, she is only provided with a subset of evidence for the complete representation (only the tone, not the segmental content)

Richness of the base and underlying contrast

- (22-a) and (22-b) are both possible input representations in OT
(22)
a.
$\stackrel{\Delta}{\mathrm{yu}}$
b.
yu
$>$ realized in all contexts
$>$ realized as a last resort
- the analysis based on Dep- σ implies that this difference between underlying forms has crucial surface effect
- independent arguments for contrastive syllabification in, for example, Elfner (2006), losad (2013), or Vaux (2013)
\rightarrow an economy argument: a lexical contrast is reduced to a difference in underlying prosodic structure

Implications and further prediction

Eva Zimmermann (Leipzig U)
Allomorphy in Yucunany Mixtepec
P\&P 10, Konstanz 26/32
Implications and further prediction

More allomorphy involving defective segmental morphemes: Aymara

- morphemes triggering lengthening of a preceding vowel in La Paz Aymara (Andes, spoken in Bolivia and Peru)
(23) Vowel lengthening in the future (Briggs 1976, Hardman 2001)

| | BASE | FUtURE | |
| :--- | :--- | :--- | :--- | :--- |
| a. | sara

 'go' | sara:
 '(I) will go' | B265+266 |
| b. | apa | apa:tam | |
| 'bring, have' | 'he will bring'
 al | H211 | |
| c. | alja
 'sell' | alja:ma
 'I will sell' | H211 |

- whenever double-lengthening is expected, /-ja:/ surfaces
- no superlong vowels: alternative repair to realize both 'lengthenings'
(24) Allomorphy between : and ja (Beesley 2000)
a. warmi-:-:
women-VB-1>3.FUt
'I will be a women'
warmija: *warmi::
b. qul ${ }^{\mathrm{j}}$ i-ni-:-:-ta
money-possessor-Vв-1>3.Fut-FS
'You will have money'
qulquinija:ta *qul ${ }^{j}$ qini:ita

[^3]Allomorphy in Yucunany Mixtepec
P\&P 10, Konstanz

Aymara: monorepresentational analysis

- /-ja/ underlyingly lacks a σ and is not realized if lengthening possible
- realization of/ja/ implies a violation of DEP- σ and is dispreferred
- Max- μ demands that its μ must be realized: lengthening of preceding V
\rightarrow realization of /-ja/ as last resort to realize the μ
(25) Autosegmental analysis of Aymara

- ${ }^{\mu}$
(Leipzig U)
Allomorphy in Yucunany Mixtepe
P\&P 10, Konstanz 30/32

A monorepresentational account of allomorphy

- for an account of allomorphy in YM where realization of only an additional tone alternates with realization of segments
\rightarrow crucial assumption: prosodically defective segments are only realized as a last resort
- extension of this account to Aymara where a non-concatenative allomorph alternates with a segmental allomorph as well
- prosodically defective morphemes are independently predicted in OT: an economy argument if they can account for apparently lexical contrasts/allomorphy pattern

References

Beesley, Kenneth R. (2000), 'A note on phonologically conditioned selection of verbalization suffixes in Aymara', Technical Report, Xerox Research
Centre Europe, July.
Bickel, Balthasar and
http://www.spw.uzh.ch/autotyp.
Briggs, Lucy Therina (1976), Dialectal variation in the Aymaran language of Bolivia and Peru, PhD thesis, University of Florida.
Caballero-Morales, Gabriel (2008), Diccionario del idioma mixteco, Universidad Tecnologica de la Mixteca.
Caballero-Morales, Gabriel (2008), Diccionario del idioma mixteco, Universidad Tecnologica de la Mixteca.
de las Lenguas Indigenas, Instituto Nacional (2005), 'Catálogo de las lenguas indigenas nacionales', Online at http://www.inali.gob.mx/clin-inali/.
Mexico: INALI.
Menas, Instituto Nacional (2005), 'Catalogo de las lenguas indigenas nacionales,
Men
Dolphyne, Florénce Abena (1996), A comprehensive course in Twi (Asantte), Ghana University Press.
Elfner, Emily Jane (2006), Contrastive syllabification in Blackfoot, in D.Baumer, D.Montero and M.Scanlon, eds,' 'WcCFL 25', Cascadilla ProceedElfren, Emily Jane (2006), Contrastive syllabific
inss Project, Somerville, MA, pp. 1411 149.
Iosad, Pavel (2013), 'Glottal stop insertion in Scottish Gaelic and contrastive syllabification', Paper presented at The Linguistics of the Gaelic Languages XV, Dablin, Ireland.
Lewis, P. Puul, Gary F. Simons and Charles D. Fennig (2014), Ethnologue: Languages of the Worrl, Seventeenth edition, SIL International. Online
version http://www ethnologue com. Mascaro, Joan (2007), 'External allomorphy and lexical representation', Linguistic I Inquiry 38, 7115 - 735 .
McKendry, Inga (2013), Tonal Association, Prominence and Prosodic Structure in South-Eastern Nochixtlán Mixtec, PhD thesis, University of Edinburgh.
Paster, Mary (20
Paster, Mary (2006) Phonological Conditions on Affixation, PhD thesis, University Of California Berkeley
Paster, Mary (2009), 'The origin of (apparent) homophony avoidance in Yucunany Mixtepec Mixtec person marking', UCLA American Indian
Seminar August 14 , Sem inar August 14, 2007.
Paster, Mary (2010), 'The verbal morphology and phonology of Assante Twi', Studies in African Linguistics 39, 77-120.
Peam de Azcona (2004a), Aspects of tone in Yucunany dialect of Mixtepec Mixtec', Conference on Oto-Manguean and Oaxacan Languages. Paster, Mary a de de (2004b), A phonological sketch of the Yucumany dialect of Mixtepec Mixtec, in C.Jany, ed., 'Proceedings of the 7 th Annual Workshop on American Indigenous Languages', UC Santa Barbara.

[^4]
[^0]: Allomorphy in Yucunany Mixtepec

[^1]: Eva Zimmermann (Leipzig U

[^2]: Eva Zimmermann (Leipzig u

[^3]: va Zimmermann (Leipzig U)

[^4]: (Paster, 2006; Mascaro, 20077: Dolphyne, 1996; Pike and Ibach, 1978; Paster and Beam de Azcona, 2004ab;; Paster, 2009; Yip, 2002; Hardman,
 2001; Brigss, 1976; Beesley, 2000; Paster, 2010, de las Lenguas Indigenas, 2005; Elfner, 2006; Vaux, 2003)
 (Caballero-Morales, 2008), 15 Mixtec languages in Bickel and Nichols (ongoing), 52 in Lewis et al. (2014): Iosad (2013), (McKendry, 2013)

