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Introduction 

Surface layers of costruction materials (Me) can be strengthened 

by the thermal diffusion saturation of interstitial impurities: nitrogen, 

boron, carbon and oxygen. In order to form deep strengthened (diffusion) 

layers without the formation of the nitride film on the surface, the method 

of nitriding of titanium under reduced nitrogen pressure is quit effective 

[1]. For the better result the two-component mixture of interstitial 

elements, for example, boron-nitrogen containing medium G(N,B) should 

be used [2]. However, there are no detailed descriptions of such a thermal 

and chemical treatment [1] because of the complexity and variety of high 

temperature processes, which appear simultaneously in the metal-gas (Me-

O) system, particularly at initial stages. They determine the kinetics of the 

interaction Me-O by the formation of the either diffusion zone or new 

phases. The defects of crystal lattice in diffusion layer, such as vacancies, 

dislocations or other nonuniformities (in other words there are locally 

distributed energy disturbance) and chemical reaction which influence on 

process of mass transfer cause to increasing the possibility of 

The Open-Access Journal for the Basic Principles of Diffusion Theory, Experiment and Application

©2005, Ya. Matychak
Diffusion Fundamentals 3 (2005) 8.1 - 8.18 1

mailto:fedirko@ipm.lviv.ua
mailto:prytula@ipm.lviv.ua


 

nonequilibrium segregation. Therefore, experimental and theoretical 

studies are necessary in order to bring the light on the physical nature of 

interaction mechanisms on the different stages in the Me-G system. 

Today, analytical researches of interaction between different media 

(including titanium interaction with gases) are far from complete ones due 

to poor description of its different stages, especially initial stages [3, 4]. It 

is important to understand the physical nature of phenomena determined 

by the interaction mechanisms, which include the internal (defects, grain 

boundary) as well as external (time, temperature, pressure) factors.  

Therefore, we propose to distinguish the role of separate processes 

in general phenomenon of interaction Me-G, to estimate relative 

contribution of each process taken separately and to reveal conditions of 

dominating some processes in comparison with others.  

The aim of the work is to describe the mathematical model for the 

diffusion of interstitial elements in the titanium which interacts with the 

rarefied boron-nitrogen containing medium in consideration of their non 

equilibrium segregation, and to estimate influence of time-temperature 

parameters as well as surface phenomena. 

1. Phenomenological physical-mathematical model of 

interaction Ме(Ті) - G(N,B). 

Let us consider the interaction of the titanium with the boron-

nitrogen containing medium under the rarefied atmosphere 10…10-1Pa in 

the temperature range 750-850°С (below the temperature of the titanium 

polymorphic transformation). The numerous experimental data [1] 

indicate that: during 6-25 hours there is no nitride film on the titanium 

©2005, Ya. Matychak
Diffusion Fundamentals 3 (2005) 8.1 - 8.18 2



 

surface; kinetics of nitriding is sensitive to diffusion supply of nitrogen to 

titanium surface; surface concentration of nitrogen depends on the time. In 

such conditions The analytical description of the kinetics of nitriding 

(boriding) by known Fick’s equation with setting constant value of the 

surface concentration (1-st diffusion boundary conditions) would be not 

correct. On the whole, in different stages of reactive diffusion, the time 

dependence of the concentration of the diffusant on the interface is 

essentially different [5]. Therefore, for definition of mass transfer of 

interstitial impurity, it is necessary to analyze the processes in the bulk of 

subsystems (Me and G), in the nonequlibrium medium, kinetics depends 

on an external and internal mass transfer.  

The high-temperature interaction between the metal Me and a 

gaseous medium G begins from the moment of their contact (τ=0) at the 

interface. The mass transfer of gaseous component in the bulk plays an 

important role. With time, the consequences of interaction are perceptible 

in the bulk of the metal and in the medium. They are caused by mutual 

processes which realize: a) on the interface - absorption, chemisorptions, 

chemical reactions, formation of the two-dimensional structures, defect 

appearance; b) in the volumes of subsystems (diffusion, defects 

segregation, internal chemical and structure transformations). 

It is well known, that the thermodynamic conditions as the driving 

force determine the phase formation. The sudden change of chemical 

potential of the impurity on the interface and the sufficient penetrability of 

the interface boundary are necessary conditions to begin the flow of the 

impurity. Then impurity migrates to the subsystem, where its chemical 
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potential is lower. The system once disturbed from balance in the moment 

of interaction tends to attain a new equilibrium state. At such system, the 

metastable intermediate phases can exist during the some time (even a 

long time [6]). In this case, the chemical potential of impurity takes on 

intermediate quasi-stationary values. Also, the unsoundness of metals 

plays an important role. However, the intensity of surface reaction and the 

mobility of diffusant (diffusion factor) are more essential factors affecting 

on the interaction between Me – G .  

   
Fig. 1. Scheme of processes and distribution of concentrations of 

nitrogen (a) and of boron (b) in titanium during its interaction with boron-

containing medium. 

 

A peculiar layer, which occupies a (0,δ) zone of the metal and the 

(-δ, 0) of the medium (fig 1a), is forming in the subsystems after the 

contact Ме(Ті) - G(N,B) in the neighborhood of the interface. This duplex 

layer is unstable, with defected structure. This layer is observed as a quasi-

phase, or a solution on the metal surface [7]. Using such definition of the 

contact layer and carrying out thermodynamic analysis (energy of 
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compounds formation — |∆GTiN| > |∆GTiB| [8], solubility of impurities in 

titanium - CN
max> CB

max, diffusion coefficients DN
Ti>DB

Ti) with taking into 

account kinetic and structural features, the mathematical model of 

interaction in system Ме(Ті) - G(N,B) (subject to >P2NP B ) is offered. 

Gas-saturated zone is formed due to diffusion of nitrogen in the titanium 

according to scheme on the fig.1: a→ b- diffusion in gaseous medium 

(parameter - diffusion coefficient D1) ; b→ c- physical absorption, 

dissociation and chemisorption h1; c→ d- chemical reaction (k); c→ e- 

dissolution and diffusion in the metal (D).  

The diffusion of boron is realized by the similar scheme (fig.1b.) 

but with some peculiarities. At the first, due to decreasing of the partial 

pressure of nitrogen in the neighborhood of the interface, partial pressure 

of the boron can increase. On the other hand, the diffusion of the boron in 

the titanium surface layer follows the diffusion front of the nitrogen. 

Therefore, this layer is defective and can be presented like the solid 

solution of the nitrogen in the titanium Ті(N) or like the nonstehiometric 

nitride ТіNх (under high partial pressure of nitrogen media ). The 

presence of defects of the crystal lattice in the surface layer causes to 

increase the boron mass transfer and the possibility of its segregation on 

the defects in the forms of chemical compounds (borides).  

2NP

Thus, the interaction between the titanium and the rarefied boron-

nitrogen containing media (in the first approximation with omitting the 

mutual influence of elements) will be considered as nitriding of the 

titanium with the following boron saturation. 
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1.1. Mathematical description of nitriding of titanium. 

For object of investigation, we take semispace, because in whole, 

the changes are applied only to the surface layer, which has less thickness 

than titanium sample. Then, in order to find the distribution of impurity 

concentration С(х,τ) in solid solution, we formulate the following 

boundary – initial value problem: 

.),()0,(,0,0// 22
oCCxCxatCxCD =∞=∞<<>∂∂=∂∂ τττ (1)

0/)()(/ 0 +=∂∂+−−−=⋅ xatxCDCCkCChddC eqτω (2) 

Here, Ceq is the quasi-equilibrium magnitude of the surface 

impurity concentration ( , where d is coefficient of 

equilibrium impurity distribution between the metal and the medium,   

is determined by the partial pressure of impurity in the medium). In the 

case of quasistationary state (

−⋅= eqeq CdC

−
eqC

)0/( =τddC ) or by omitting the contact 

layer ( 0=ω ) correspondingly to eq.2, we obtain typical 3-th boundary 

condition: )],0([/ 0| τCChxCD eqx −=∂∂− = [9]. It shows, that all atoms, 

which precipitate on the surface, diffuse in metal with distributing 

according to the diffusion laws. In this equation, if  

then

0→D

eqCC =),0( τ , in other words, the concentration on the surface is equal 

to the equilibrium concentration. It is independent of time and becomes on 

the instant. However, correspondingly to boundary condition (2), if the 

diffusion in the bulk is lacking ( ), we have: 0→D

]./)(exp[)(),0( 0 ωττ khCCCC eqeq +−−−=   (3) 
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Thus, the contact layer with capacity ω plays the role of mini 

reservoir. 

In the grain boundary, the expression (2) contains the 

operator τdd / , which allows one to describe the kinetics of the reagent 

accumulation on the interface. The difference between the diffusion flux 

of the impurity  with reducing the variable x to 0 from the left side of 

the interface (x=-0), and at x→ +0, determines the kinetics of the 

impurity accumulation in the neighborhood of the interface via a chemical 

reaction. Such accumulation takes place in the contact layer with the 

averaged capacity ω on defects, which play role of the "traps" for the 

diffusant.  

1j

j

If the chemical reactions with formation of compounds TiNх can 

occur in the system, then the impurity concentration at the surface layer 

for the binding state (in compounds) has the following form 

.]),0([),0( 0
0

* dtCtCkC −⎟
⎠
⎞

⎜
⎝
⎛= ∫

τ

ω
τ   (4) 

Parameter k describes the intensity of reaction. The total impurity 

concentration in the neighborhood of interface is represented by the 

expression 

).,0(),0(),0( τττ ∗
∑ += CCC    (5) 

Thus, among all adsorbed atoms of impurity, only part from them 

is dissolved in the metal and diffuses in the bulk. The rest segregate near 

surface as compounds (Fig.1a). In analytical form, the solution of equation 

for С(х, τ) (here )/()),((),( 00 CCCxCxC eq −−≡ ττ  is normalized 
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concentration that describes distribution of impurity of the solid solution ) 

is [10] following: 

[ ] [ ] )/(),(),()2/()(),( 1
1

12
1

2
1 ∆−−+= −−− DxFqxFqhDxerfckhhxC ττττ . (6) 

here 

[ ]
[ ]

./)(41,)2/()1(,)2/()1(

,)2/()exp(),(

,)2/()exp(),(

21

2
2
222

1
2
111

Dkhqq

DxDqerfcDqxqxF

DxDqerfcDqxqxF

+−=∆∆−=∆+=

++=

++=

ωωω

ττττ

ττττ

 

The formula which describes the surface concentration of the 

unbound impurity takes on the form 

[ ] )/(/)(/)()/(),0( 1122 ∆−−+= DhqfqfkhhC τττ , (7) 

here 

)()exp()(,)()exp()( 2
2
221

2
11 ττττττ DqerfcDqfDqerfcDqf == . 

The surface concentration of impurity (0, )C∗ τ , which exists in 

compounds and the total concentration on the surface ),0( τ∑C  are 

determined by equation (Eq. 4) and (Eq. 5), respectively. Using the 

dependence (Eq. 6) for С(х,τ) and (Eq. 7) for C(0,τ), one can determine 

the total mass transfer of impurity SM /)(τ∑∆  during the time τ per 

square of surface contact and the  mass change SM /)(τ∆  caused only by 

diffusion dissolution. Then, we have  

[ ] ∫∫ +==∆−=∆ ∑

ττ

ττ
00

),0(/)(,),0(/)( dttxjSMdttCChSM eq
 . (8) 

The density of diffusion flux in metal is determined as 

[ ]0 0 2 1( 0, ) / ( ) ( ) ( ) /x eqj x D C x h C C f f=+= + τ = − ∂ ∂ = − τ − τ ∆. (9) 
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In the case of the short-time range, we get  

.
23

41),0( 22 ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +

−⋅+⋅−≈
ωω

τ
πω

τ
ω
ττ khDDhC  (10) 

 2
0( 0, ) 2 ( ) /(eqj x h C C D= + τ = − τ πω ) . (11) 

as well as for the long-time range these quantities is represented as 

( )[ ] ( ) ,11/exp1),0( 2
⎥
⎦

⎤
⎢
⎣

⎡

+
−

+
≈

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+⋅+−

+
≈

τ
τττ D

khkh
h

D
kherfcDkh

kh
hC (12) 

0( 0, ) ( )eq
hj x C C

h k
= + τ = −

D
+ πτ

.   (13) 

Thus, using nonstationary boundary condition of the mass transfer 

on the interface (2), we obtain equations (9) and (11) which describe the 

density of the diffusion flux of the impurity in the metal. The density 

depends on time. This dependence differs from one [9]. It 

contains fallibility at  τ→ 0. In this case the density of flux goes to the 

infinity. In the equations (9) and (11), the appearance of the finite 

parameters of surface reactions eliminates this paradox. 

2/1/1~j τ

1.2. Mathematical description of boriding of titanium.  

Let us formulate the task for the description of kinetics of the 

boron diffusion in the defective nitride layer of the titanium ТіNx (fig. 1b). 

In view of the kinetic aspect, the defects play role of traps for diffusant. 

Therefore, Fick`s equation with addition member which takes into account 

a presence of the “traps” zone in the diffusion and boundary conditions of 

mass changing with fixation of time dependences of boron concentration 

on both side of interface is used [11]. We obtain 
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),(// 0
22 CCKCxCdD −+∂∂=∂ τ

     
   (14).0,0,)(/ 0 ∞<<>−=∂∂ ∗ xCCKC ττ

,0)0,(*,),()0,( 0 ==∞= xССCxC τ      

[ ],),0(),0(/ 0 ττβ
ββ +−−=∂∂− += CCdhxCD x   (15) 

Here ),( τxC  is the concentration of boron dissolved in ТіNx, D is 

the diffusion coefficient of boron;  is the concentration of boron 

segregated on the defects due to chemical interaction with titanium. In 

other words, this is the concentration of the boron in binding state – 

complexes which is considered as separate low-motioned components. 

The parameter К characterises the intensity of the boron capturing by 

“traps”;  is the coefficient of the equilibrium boron 

distribution between the titanium and medium, parameter  is the 

coefficient of the boron mass transfer. 

),( τxC ∗

β
β mm CCd /=

βh

It should be noted, that in general, the parameters  are 

functions of the time and distance. However, in the proposed model, they 

have effective constant values. 

KhD ,, β

We suppose that concentration of boron ( 0, )Cβ − τ  at the left side of 

interface is changing with time from 0Cβ  for τ = 0 to stationary (quasi-

equilibrium) value  according to dependence mCβ

0( 0, ) ( )exp( )m mC C C C Kββ β β
β− τ = − − − τ .                  (16) 

The following expression represents the assumption that chemical 

reaction has first order:  
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( 0, ) / ( 0, ) mdC d K C Cβ β
β

β⎡ ⎤− τ τ = − − τ −⎣ ⎦ , 

here  is parameter of rate of reaction. Kβ

Using an operating method of Laplace transformation the solution 

of the problem is obtained in the form 

,),(*),(),(,),()(),(*),(*

,),()(
),(

),(

τττϑθθθϑττ

θθθτ
τ

τ

τ ϑ

τ

xCxCxCddxFK
CC

xCxC

dxF
CC

CxC
xC

o oom

oom

o

+=Φ−=
−

≡

Φ−=
−

−
≡

∑∫∫

∫
(17)  

here 

( ) ( )

.,/

)()exp(11)exp()exp()()(

,
2

/exp
2

/exp
2
1),(

2

0

2

β
ββ

τ

βββ θθθ
θπ

θττ

τ
τ

τ
τ

τ

mm CdCDhH

dDHerfcDH
DH

KKDHKF

K
D
xerfcDKxK

D
xerfcDKxx

⋅==

⎥
⎦

⎤
⎢
⎣

⎡
−−=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
++⎟

⎠

⎞
⎜
⎝

⎛
−−=Φ

∫
 

Such correlations describe the kinetics of the boron diffusion in the 

surface layer of the titanium. The boron diffusion is passed by the front of 

nitrogen diffusion. Equations (17) include phase-boundary and internally-

volume chemical reactions. For the fixed period of the time, the 

calculations of ),( τxC  allow us to get the boron distribution in solid 

solution. The boron distribution in the boron compounds can be obtained 

using the quantity . The sum ),( τxC ∗ ),( τxCΣ  is the experimentally found 

boron distribution.  

Neglecting of kinetics of phenomena on the 

interface , we obtain the diffusion process with taking 

into account “traps” only from one source. Then from eq. (17), we have 

,, ∞→∞→ ββ hK
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1
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/

/

*  (18) 

At some moment τ = τ1, the parameter τβK  becomes large. This 

fact corresponds to the approximation of boron concentration from the left 

side of interface up to the quasistationary value . Then, from the right 

side of interface, the boron concentration is determined by relations: 

β
mC

( ) ( )

( )

.
0

),0(),0(*

,)2exp(
1

)2(12

2
),0(

θ
τ

θτ

ττ
πτ

τ

β

ττττ

∫ +=+

⋅−−−

−−−−
−

=+

⎥⎦
⎤

⎢⎣
⎡

⎥
⎦

⎤
⎢
⎣

⎡

dСКС

DHerfcDHDHKe
K

DH

Kerf
DH

K
DHerfcKDHe

KDH

DH
C

(19) 

It should be noted, at ( 0, ) const ( )mC C Kβ β
β− τ = = → ∞ , the second term 

in the first correlation is equal to zero. 

If we assume that constD = , then the following correlation 

between diffusion coefficient of boron and nitrogen 

is Ti
N

TiN
B

Ti
B

TiB
B DDDD x <<< . Thus, in difference with titanium boriding, 

when the thin boride film is forming, during saturation in the boron-

nitrogen containing medium borides are forming on the deeper distance 

from surface. Therefore, using of such a media allows to form deep 
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strengthened layers due to dissolved nitrogen with additionally hardened 

by boron surface layer. Effectiveness of such a treatment is determined by 

temperature-time parameters and by the content of the medium (partial 

pressures of components).  

Let us analyze of these factors for the nitriding process. 

2. The influence of temperature-time parameters and surface 

phenomena on the kinetics of nitriding. 

Let us make some notes for introduced parameters of the model Рі 
(Рі=D, h, k). The diffusive supply of nitrogen to the surface of titanium, its 

adsorption and chemisorption which are described by effective parameters 

h (coefficient of mass transfer), diffusion of nitrogen in titanium with 

coefficient D and chemical interaction (effective parameter k) are 

physical-chemical processes. They are thermally active and are 

characterised by corresponding energies of activation with dependence 

Рі=Р0і ехр(-Eі /RT). Namely, for the coefficient of diffusion of nitrogen 

[1], we have D0 =1.2*10-2cm2/s, =DE 45250 cal/moll. The coefficients of 

the diffusion of the nitrogen in the titanium at the research temperatures 

Т1=750° С, Т2=800° С and Т3=850° С are following: D1=3*10-12cm2/s, 

D2=8,4*10-12cm2/s and D3=2*10-11cm2/s. The effective parameters h and k 

besides dependence on temperature, in the great bulk are depended on 

both a partial pressure and unsoundness of material. Therefore, in general, 

they should be defined from experimental data of the saturation kinetics.  

At some band of partial pressures , the directly proportional 

dependence h ~ can be assumed [12]. With taking into account the rate 

2NP

2NP
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of the parameter h according to literature data [12, 13] to analyse of 

kinetics of nitriding, we will use the following values h and k:  

h1=1*10-8 cm/s, h2=4*10-8 cm/s, h1=8*10-8 cm/s and k=0,2*h.  

It must be noted that the equilibrium value of surface concentration 

Ceq depends on the partial pressure of the nitrogen too. For law partial 

pressures of nitrogen it is valid the relation Ceq ~ . In the case of 

increasing the partial pressure, we have C

2NP

eq ~ 
2NP [7]. We emphasise on 

this, because further, the figures of kinetic dependencies of concentrations 

(C), of density of fluxes (j1 and j) and of mass increasing (∆M and ∆MΣ) 

with normalizing on Ceq will be shown.  

Fig. 2. Nitrogen distribution in the 
surface layers of titanium at the different 
expositions (τ1=1h, τ2=5h, τ3=10h). 
Dashed line corresponds to ∞→h . 
 

The role of time parameter is shown by the curves that are plotted 

according to equations of item 1.1 ( e 

duration of expositions, the surface c e 

depth of gas saturated zone increase; a
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Fig. 3. Time dependencies of density 
of diffusion fluxes (external flux j1 and 
flux inside of metal j) under 
conditions Т=750°С, D= 3*10-

12cm2/s, h=1*10-8cm/s (painted lines) 
and when  ∞→h (dashed line). 

Fig. 2-4). With increasing of th

oncentration of nitrogen and th
-st
t the statement of the 1  boundary 
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task (task ( constCh = constCh =∞→ ),0(, τ

F
i
b
t
Т

), we have exceeding values of the 

concentration (fig.2). With taking into account of the nonstationary 

character of processes on the interface, the curves of density of internal 

diffusive flux (j) has maximum; the maximal (finite) value of density of 

external flux (j1) corresponds to the start of the interaction. In the case 

when constCeq =  the density 

of flux  at 0→j

0→τ  (fig.3). 

Fig.4 shows the 

deviation of mass increasing 

from parabolic law. For the 

small time it is caused by 

influence of surface 

phenomena. At the longer 

ex

ch

be

tit

be

co

of

se

su

©2
Di
 
ig. 4. Kinetic dependencies of mass 

ncreasing of titanium sample (∆М – is caused 
y diffusion dissolution of nitrogen, ∆МΣ -
otal after nitriding) under conditions 
=750°С, D= 3*10-12cm2/s, h=1*10-8cm/s.

position, it caused by 
 
Fig. 5. Nitrogen distribution in the surface layer 
of titanium at the different temperatures of 
nitriding (Т1=750°С, Т2=800°С, Т3=850°С). 
Dashe line corresponds to ∞→h . 

emical interaction 

tween nitrogen and 

anium.  

The difference 

tween ∆МΣ and ∆М 

rresponds to the quantity 

 the nitrogen which is 

gregated near the 

rface. 
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Fig. 7. Nitrogen distribution in surface layer of 
titanium at the different values of coefficient of 
mass transfer (h1=1*10-8cm/s, h2=4*10-8cm/s, 
h3=8*10-8cm/s). Dashed line corresponds to 

∞→h . 

The role of the temperature parameter is shown by the curves of 

the distribution of the nitrogen in the titanium at changing temperature 

(Fig. 5). At higher temperatures of isothermal nitriding, the depth of 

saturated zone is increasing (Fig. 5, 6c), however, the magnitude of 

surface concentration of nitrogen can decrease (Fig. 5, 6a) due to the 

intensive diffusion in the bulk of the metal (Fig. 6c). At the same time, 

concentration of nitrogen 

in the bulk of sample 

follows of additive 

dependence from 

temperature (Fig. 6b). 

   
            a    b           c  
Fig. 6. Kinetic distribution of nitrogen concentration of both on the surface (a) and on 
deep 10 µm (b) and also variety of deep of gas saturated zone (c) at the different 
temperatures (Т1=750°С, Т2=800°С, Т3=850°С) if h=4*10-8cм/s (painted lines) or 

 (dashed line). ∞→h

The role of partial 

pressure of nitrogen is 

represented by the curves 

on the Fig. 7. They are 

plotted for different 

values of the coefficient of nitrogen mass transfer (h). With increasing of 
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partial pressure of nitrogen (on some region), the both a surface 

concentration and depth of nitriding layer increase.  

Conclusions. 
 1. Theoretical assumptions of physical-chemical processes of high-
temperature interaction between titanium and boron-nitrogen containing 
medium in the temperature region 750-850° С are developed: a) it is 
proposed the mechanism of interaction according to which the gas 
saturated zone in titanium is formed due to the nitrogen saturation, 
whereas diffusion of the boron is realized in defect nitriding layer, where 
boron compounds segregate on the defects; b) physical-mathematical 
model of kinetic processes of the interaction, which includes the mutual 
dependence between diffusive supply of the impurity to the surface and its 
chemisorption with diffusion into bulk and non equilibrium segregation 
on the defects is offered.  

1. Using nonstationery conditions of mass transfer on the 
interface, the kinetic regularities and features of diffusive saturation of 
titanium by interstitial elements (nitrogen and boron) are established. An 
additive dependence of both the concentration of impurity on the distant 
zone from the interface and the depth of saturated zone on duration and 
temperature of exposition and partial pressure is presented. Due to 
intensive diffusion in the bulk of the titanium at the longer exposition the 
concentration of the impurity near interface decrease; c) it is shown that 
there is extreme value of the internal flux near interface. The external flux 
is characterized by maximum of magnitude (finite value), which 
corresponds to the start of the interaction. Thus, due to offered equations 
the paradox according to which, if the surface concentration is constant 
and time of interaction decrease, the diffusive flux of impurity directs to 
infinity, is eliminated; in the calculations of mass parameter the separate 
value which is caused by segregation on the interface and in the bulk of 
metal due to which one mass increasing is deviated from the parabolic 
dependence was estimated. 
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